三步教你用Verilog写一个CPU
第三步:登峰造极
基础
课程要求:数字电路、计算机组成原理、程序设计
编程语言:Verilog
开发平台:xilinx ISE
FPGA开发板:Nexys3
教学大纲
第一步
指令集设计与五级流水线的实现
第二步
内存设计与CPU测试
第三步
指令冲突避免
指令冲突介绍
在我们之前的测试中可以看到,指令之间加入了许多额外的NOP指令,这都是为了避免指令冲突,插入NOP可以有软件的实现方式(编译器),也可以通过硬件实现,即CPU检测到冲突的时候就执行NOP指令。不过对于CPU的设计者来说,这极大地降低了CPU的性能,是不可容忍的。下面我来详细讲解指令冲突的不同场合以及避免措施。
流水线处理中,由于各个阶段的依赖关系、硬件资源的竞争等原因,会出现操作无法同时执行的情况。造成流水线故障的原因称为冒险,冒险分为构造冒险、数据冒险和控制冒险 3 种类型。
构造冒险
由于硬件资源的竞争,操作无法同时执行的情况。由于内存设计采用了指令内存和数据内存分离的方式,因此不会产生构造冒险。
数据冒险
由于指令执行所需要的数据还未准备好所引起的冒险情况。当即将执行的指令依赖于还未处理完成的数据时,会导致指令无法立刻开始执行,引发数据冒险。
数据冒险可以简单地通过插入 NOP 的方式避免,不过这样大大降低了流水线的工作性能。另外的方法就是通过数据转发,尽管数据回写在 WB 阶段,但实际上运算结果在 EX阶段就已经确定,可以传递给下一条指令。
数据转发有一个例外就是 LOAD 指令,由于 LOAD 指令从内存调取数据是在 MEM 阶段才完成的,而此时下一条指令也已经到了 EX 阶段,与数据转发不吻合。解决 LOAD 冒险的方法是暂停机制,阻塞流水线一个周期,到下一个周期的时候再继续执行 LOAD 之后的指令。
控制冒险
无法确定下一条指令而引发的冒险情况。在执行可能会改变下一条指令的分支指令时,在这一条指令执行结果确定之前下一条指令无法开始执行,从而引起控制冒险。控制冒险也可以通过在分支 指令之后插入 3 条NOP 指令避免,不过更加高效的方法是采用静态分支预测,即假定分支指令不转移,CPU 继续执行跟在分支指令之后的指令,当分支指令执行到MEM 阶段确定了分支需要转移,则排空流水线 IF、ID、EX 阶段,重新读取转移目标地址处的指令开始顺序执行。