数据结构之图 Data Structure — graph

Adjacency Matrix用C实现如下:

#include
#include
#include

typedef char VertexType;
typedef int EdgeType;

#define MAXVEX 100
#define INFINITY 11111
//#define DEBUG

typedef struct
{
    VertexType vexs[MAXVEX];
    EdgeType arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges; //定义顶点数,边数
}Graph;

//Locate the vertex you need
int locates(Graph *g,char ch)
{
    int i=0;
    for(i=0; inumVertexes;i++){
        if(g->vexs[i]==ch)
            break;
    }

    if(i>=g->numVertexes)  //如果超过顶点数量了,返回-1
        return -1;

    return i; //return the index of the vertex you are looking
}

//建立一个无方向网图的邻接矩阵表示
void CreateGraph(Graph *g)
{
    int i,j,k,w;
    printf("Input the number of vertex and arc:\n");
    scanf("%d %d", &(g->numVertexes), &(g->numEdges));
    printf("#\n");
#ifdef DEBUG
    printf("The number is %d and %d.\n",g->numVertexes,g->numEdges);
#endif

    printf("The total amount of vertexes is %d. Assign to each.\n",g->numVertexes);

    //assign a value to each vertex
    for(i=0;inumVertexes;i++){
        g->vexs[i]=getchar();
        while(g->vexs[i] == '\n'){
            g->vexs[i]=getchar();
        }
    }

#ifdef DEBUG
    for(i=0;inumVertexes;i++){
        printf("Vexs[i] is %c ",g->vexs[i]);
    }
    printf("\n");
#endif

    //initialize each arc/edge as infinity
    for(i=0;inumEdges;i++){
        for(j=0;jnumEdges;j++){
            g->arc[i][j]=INFINITY; //initialize
        }
    }

    for (int i = 0; i < g->numEdges; ++i){
        char p,q;
        printf("input the i and j of (Vi,Vj), and the weight:\n"); //一条边的两个结点,和这条边的权重
        p=getchar();
        while(p=='\n'){
            p=getchar();
        }
        q=getchar();
        while(q=='\n'){
            q=getchar();
        }
        scanf("%d",&w);

        int m=-1;
        int n=-1;
        m=locates(g,p);
        n=locates(g,q);
        if(n==-1 || m==-1){
            fprintf(stderr,"No such vertex\n");
            return;
        }
        g->arc[m][n]=w;
        g->arc[n][m]=g->arc[m][n];
    }
}

void printGraph(Graph g){
    int i,j;
    for(i=0;ifor(j=0;jprintf("%d\t",g.arc[i][j] );
        }
        printf("\n\n\n");
    }
}

int main(int argc, char const *argv[])
{
    Graph g;

    CreateGraph(&g);
    printGraph(g);

    return 0;
}

Adjacency List的表示,用C实现

#include
#include

#define DEBUG
#define MAXVEX 1000

typedef char VertexType;
typedef int EdgeType;

typedef struct EdgeNode //边表结构
{
    int adjvex; //邻接点域
    EdgeType weight;
    struct EdgeNode *next;
}EdgeNode;

typedef struct VertexNode  //顶点表结构
{
    VertexType data;
    EdgeNode *firstedge;    //
}VertexNode,AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes,numEdges;
}GraphList;

int Locate(GraphList *g,char ch)
{
    int i;
    for(i=0;iif(ch==g->adjList[i].data){
            break;
        }
    }
    if(i>MAXVEX){
        fprintf(stderr,"there is no such vertex.\n");
        return -1;
    }
    return i;
}

void CreateGraph(GraphList *g)
{
    int i,j,k;
    EdgeNode *e;
    EdgeNode *f;
    printf("input the amount of matrixs and arcs:\n");
    scanf("%d %d",&g->numVertexes,&g->numEdges);

#ifdef DEBUG
    printf("numVertexes is %d. numEdges is %d.\n",g->numVertexes,g->numEdges);
#endif

for(i=0;inumVertexes;i++){
    printf("输入顶点%d:\n",i);
    g->adjList[i].data=getchar();
    g->adjList[i].firstedge=NULL;
    while(g->adjList[i].data=='\n'){
        g->adjList[i].data=getchar();
    }
}

//build 边表
    for(k=0;knumEdges;k++){
        printf("输入边(vi,vj)上的顶点序号:\n");
        char p,q;
        p=getchar();
        while(p=='\n'){
            p=getchar();
        }
        q=getchar();
        while(q=='\n'){
            q=getchar();
        }
        int m,n;
        m=Locate(g,p);
        n=Locate(g,q);
        if(m==-1 || n==-1){
            return;
        }
#ifdef DEBUG
    printf("p=%c\n",p);
    printf("q=%c\n",q);
    printf("m=%d\n",m);
    printf("n=%d\n",n);
#endif

        //申请内存空间生成边表结点
        e=(EdgeNode *)malloc(sizeof(EdgeNode));
        if(e==NULL){
            fprintf(stderr,"malloc() error.\n");
            return;
        }

        e->adjvex=n;
        e->next=g->adjList[m].firstedge;
        g->adjList[m].firstedge=e;


        f=(EdgeNode *)malloc(sizeof(EdgeNode));
        if(f==NULL){
            fprintf(stderr,"malloc() error.\n");
            return;
        }

        f->adjvex=m;
        f->next=g->adjList[n].firstedge;
        g->adjList[n].firstedge=f;
    }
}

void printGraph(GraphList *g)
{
    int i=0;
#ifdef DEBUG
    printf("printGraph() starts.\n");
#endif

    while(g->adjList[i].firstedge!=NULL && iprintf("顶点%c与这些点连接:",g->adjList[i].data);
        EdgeNode *e=NULL;
        e=g->adjList[i].firstedge;
        while(e!=NULL){
            printf("%d ",e->adjvex);    //打印边表的节点
            e=e->next;
        }
        i++;
        printf("\n");
    }
}


int main()
{
    GraphList g;
    CreateGraph(&g);
    printGraph(&g);
    return 0;
}

Minimum Cost Spanning Tree

1.Prim Algorithm

用C++实现,代码如下:

/*
 * prim.cpp
 *
 *  Created on: May 3, 2017
 *      Author: yiyue
 */

#include

using namespace std;
class prims
{
private:
    int no_of_edges,no_of_nodes;//number of edges and nodes
    int graph[10][10],visited[10],mindist[10]; //minimum distance
public:
    void input();
    void output();
    void spanningtree();

    prims()//constructor -- same name of class
    {
        no_of_edges=no_of_nodes=0;
        for(int i=0;i<10;i++){
            visited[i]=mindist[i]=0;
            for(int j=0;j<10;j++){
                graph[i][j]=0;
            }
        }
    }
};

void prims::input()
{
    int vertex1,vertex2,cost;
    cout<<"Enter no_of_nodes    ";
    cin>>no_of_nodes;
    cout<<"Enter the no_of_edges    ";
    cin>>no_of_edges;
    for(int i=0;icout<<"Enter Vertex1    ";
        cin>>vertex1;
        cout<<"Enter vertex2    ";
        cin>>vertex2;
        cout<<"Enter the cost of "<" and "<" ";
        cin>>cost;
        graph[vertex1][vertex2]=graph[vertex2][vertex1]=cost;
    }
}

void prims::output()
{
    for(int i=0;icout<for(int j=0;jcout.width(4);
            cout<void prims::spanningtree(){
    int min=9999,row,col,index=0;
    for(int i=0;ifor(int j=i;jif(graph[i][j]0){
                min=graph[i][j];
                row=i;  //set it to vertex1
                col=j;  //vertex2
            }
        }
    }
    visited[row]=visited[col]=1;
    mindist[index++]=min;

    for(int i=0;i2;i++){
        min=9999;
        for(int j=0;jif(visited[j]==1){
                for(int k=i;kif(graph[j][k]0&&visited[k]==0){//visited[k]==0 makes sure it's not self-loop
                        min=graph[j][k];
                        row=j;  //set it to vertex1
                        col=k;  //vertex2
                    }
                }
            }
        }
        mindist[index++]=min;
        visited[row]=visited[col]=1;
    }
    int total=0;
    cout<cout<<"Minimum distance path is ";
    for(int i=0;i1;i++){
        cout<<" "<" ";
        total=total+mindist[i];
    }
    cout<"Total path cost is "<int main()
{
    prims obj;
    obj.input();
    obj.output();
    obj.spanningtree();
    return 0;
}

另一种实现: (参见数据结构(严蔚敏))

#include 
using namespace std;

typedef char VerTexType;
typedef int ArcType;
#define MVNum 100
#define MaxInt 32767                        //表示极大值,即∞

//辅助数组的定义,用来记录从顶点集U到V-U的权值最小的边
struct{
    VerTexType adjvex;                      //最小边在U中的那个顶点
    ArcType lowcost;                        //最小边上的权值
}closedge[MVNum];

//- - - - -图的邻接表存储表示- - - - -                       
typedef char VerTexType;                    //假设顶点的数据类型为字符型 
typedef int ArcType;                        //假设边的权值类型为整型 
typedef struct{ 
    VerTexType vexs[MVNum];                 //顶点表 
    ArcType arcs[MVNum][MVNum];             //邻接矩阵 
    int vexnum,arcnum;                      //图的当前点数和边数 
}AMGraph;

int LocateVex(AMGraph G , VerTexType v){
    //确定点v在G中的位置
    for(int i = 0; i < G.vexnum; ++i)
        if(G.vexs[i] == v)
            return i;
        return -1;
}//LocateVex

void CreateUDN(AMGraph &G){ 
    //采用邻接矩阵表示法,创建无向网G 
    int i , j , k;
    cout <<"请输入总顶点数,总边数,以空格隔开:";
    cin >> G.vexnum >> G.arcnum;                            //输入总顶点数,总边数
    cout << endl;

    cout << "输入点的名称,如a" << endl;

    for(i = 0; i < G.vexnum; ++i){   
        cout << "请输入第" << (i+1) << "个点的名称:";
        cin >> G.vexs[i];                                   //依次输入点的信息 
    }
    cout << endl;
    for(i = 0; i < G.vexnum; ++i)                           //初始化邻接矩阵,边的权值均置为极大值MaxInt 
        for(j = 0; j < G.vexnum; ++j)   
            G.arcs[i][j] = MaxInt;
    cout << "输入边依附的顶点及权值,如a b 5" << endl;
    for(k = 0; k < G.arcnum;++k){                           //构造邻接矩阵 
        VerTexType v1 , v2;
        ArcType w;
        cout << "请输入第" << (k + 1) << "条边依附的顶点及权值:";
        cin >> v1 >> v2 >> w;                               //输入一条边依附的顶点及权值
        i = LocateVex(G, v1);  j = LocateVex(G, v2);        //确定v1和v2在G中的位置,即顶点数组的下标 
        G.arcs[i][j] = w;                                   //边的权值置为w 
        G.arcs[j][i] = G.arcs[i][j];                        //置的对称边的权值为w 
    }//for
}//CreateUDN 

int Min(AMGraph G){
    //返回权值最小的点
    int i;
    int index = -1;
    int min = MaxInt;
    for(i = 0 ; i < G.vexnum ; ++i){
        if(min > closedge[i].lowcost && closedge[i].lowcost != 0){
            min = closedge[i].lowcost;
            index = i;
        }
    }//for
    return index;
}//Min

void MiniSpanTree_Prim(AMGraph G, VerTexType u){ 
    //无向网G以邻接矩阵形式存储,从顶点u出发构造G的最小生成树T,输出T的各条边  
    int k , j , i;
    VerTexType u0 , v0;
    k =LocateVex(G, u);                                                 //k为顶点u的下标 
    for(j = 0; j < G.vexnum; ++j){                                      //对V-U的每一个顶点vi,初始化closedge[i] 
        if(j != k){  
            closedge[j].adjvex = u;
            closedge[j].lowcost = G.arcs[k][j];                         //{adjvex, lowcost}
        }//if
    }//for
    closedge[k].lowcost = 0;                                            //初始,U = {u}
    for(i = 1; i < G.vexnum; ++i){                                      //选择其余n-1个顶点,生成n-1条边(n= G.vexnum) 
        k = Min(G);  
        //求出T的下一个结点:第k个顶点,closedge[k]中存有当前最小边 
        u0 = closedge[k].adjvex;                                        //u0为最小边的一个顶点,u0∈U 
        v0 = G.vexs[k];                                                 //v0为最小边的另一个顶点,v0∈V-U 
        cout << "边  " <"--->" << v0 << endl;                     //输出当前的最小边(u0, v0) 
        closedge[k].lowcost = 0;        //第k个顶点并入U集 
        for(j = 0; j < G.vexnum; ++j) 
            if(G.arcs[k][j] < closedge[j].lowcost){                     //新顶点并入U后重新选择最小边 
                closedge[j].adjvex = G.vexs[k];
                closedge[j].lowcost = G.arcs[k][j];
            }//if 
    }//for 
}//MiniSpanTree_Prim 

int main(){
    cout << "************算法6.8 普里姆算法**************" << endl << endl;
    AMGraph G;
    CreateUDN(G);
    cout << endl;
    cout << "无向图G创建完成!" << endl;
    cout <cout << "******利用普里姆算法构造最小生成树结果:******" << endl;
    MiniSpanTree_Prim(G , 'a');
    cout <return 0;
}//main

你可能感兴趣的:(数据结构笔记)