吴恩达机器学习练习1——多元线性回归

机器学习练习1——多元线性回归

  • 多变量线性回归
    • 均值归一化
    • 代价函数
    • 梯度下降
  • 练习1
    • 数据集
    • 特征缩放(归一化)
      • 均值归一化
    • 代价函数
    • 梯度下降
    • 正规方程

多变量线性回归

均值归一化

代价函数

梯度下降

练习1

数据集

x1:the size of the house (in square feet)
x2 : the number of bedrooms
y   :he price of the house

特征缩放(归一化)

在面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。
方法:将所有特征的尺度都尽量缩放到-1到1之间

均值归一化

为训练集均值
为训练集的方差或极差

function [X_norm, mu, sigma] = featureNormalize(X)
		X_norm = X;
		mu = zeros(1, size(X, 2));%average
		sigma = zeros(1, size(X, 2));%standard deviation 
		mu = mean(X_norm);
		sigma = std(X_norm);
		for i = 1:m
			X_norm(i,:) = (X_norm(i,:) - mu)./sigma;
end
mean(A):返回值为该矩阵的各列向量的均值
mean(A,2):返回值为该矩阵的各行向量的均值

std (x, flag,dim):
    flag表示标准偏差是除以n还是除以n-1

除以n-1;
除以n

dim表示维数

按照列分
是按照行分

若是三维的矩阵,dim==3就按照第三维来分数据

代价函数

%代价函数
%computeCost.m
function J = computeCost(X, y, theta)
		m = length(y); 
		J = 0;
		h = X*theta;
		J = sum(h-y).^2/(2*m);
end

梯度下降

%梯度下降
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
			m = length(y); 
			J_history = zeros(num_iters, 1);
			for iter = 1:num_iters
				h = X*theta;
				theta(1) = theta(1) -(alpha/m)*sum(h-y);
				theta(2) = theta(2) -(alpha/m)*sum((h-y).*X(:,2));	
				theta(3) = theta(3) -(alpha/m)*sum((h-y).*X(:,3));	
  	        J_history(iter) = computeCostMulti(X, y, theta);
end
end

吴恩达机器学习练习1——多元线性回归_第1张图片

正规方程

function [theta] = normalEqn(X, y)
	theta = zeros(size(X, 2), 1);
	theta = pinv(X'*X)*X'*y;
end

你可能感兴趣的:(机器学习)