吴恩达机器学习练习1——单变量线性回归

机器学习练习1——单变量线性回归

  • 单变量线性回归
    • 代价函数:
    • 梯度下降
  • 练习1
      • 数据集
        • 数据集的可视化
      • 代价函数
      • 梯度下降法
      • 可视化J

单变量线性回归

代价函数:

梯度下降

练习1

数据集

X代表poplation,y代表profits

数据集的可视化

function plotData(x, y)
		figure;
		data = load('ex1data1.txt');
		x = data(:,1);
		y = data(:,2);
		plot(x,y,'rx','MarkerSize',10);
		xlabel('Population of a city in 10,000s');
		ylabel('Profit in &10,000s');
end

吴恩达机器学习练习1——单变量线性回归_第1张图片

代价函数

%代价函数
%computeCost.m
function J = computeCost(X, y, theta)
		m = length(y); 
		J = 0;
		h = X*theta;
		J = sum(h-y).^2/(2*m);
end

梯度下降法

%梯度下降
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
			m = length(y); 
			J_history = zeros(num_iters, 1);
			for iter = 1:num_iters
				h=X*theta;
				t1 = theta(1) - alpha*(1/m)*sum(h-y);
				t2 = theta(2) - alpha*(1/m)*sum((h-y).*X(:,2));
				theta = [t1;t2];
		    J_history(iter) = computeCostMulti(X, y, theta);
end
end

吴恩达机器学习练习1——单变量线性回归_第2张图片

可视化J

吴恩达机器学习练习1——单变量线性回归_第3张图片

吴恩达机器学习练习1——单变量线性回归_第4张图片

你可能感兴趣的:(机器学习)