本章介绍了 Boost C++ 库 Asio,它是异步输入输出的核心。 名字本身就说明了一切:Asio 意即异步输入/输出。 该库可以让 C++ 异步地处理数据,且平台独立。 异步数据处理就是指,任务触发后不需要等待它们完成。 相反,Boost.Asio 会在任务完成时触发一个应用。 异步任务的主要优点在于,在等待任务完成时不需要阻塞应用程序,可以去执行其它任务。
I/O 服务抽象了操作系统的接口,允许第一时间进行异步数据处理,而 I/O 对象则用于初始化特定的操作。而 Boost.Asio 只提供了一个名为 boost::asio::io_service
的类作为 I/O 服务。但可以作为I/O 对象的类却很多,例如类 boost::asio::ip::tcp::socket
用于通过网络发送和接收数据,而类 boost::asio::deadline_timer
则提供了一个计时器,用于测量某个固定时间点到来或是一段指定的时长过去了。
#include
#include
void handler(const boost::system::error_code &ec)
{
std::cout << "5 s." << std::endl;
}
int main()
{
//定义一个I/O服务,用户初始化I/O对象
boost::asio::io_service io_service;
//定义一个I/O对象,所有 I/O 对象通常都需要一个 I/O 服务作为它们的构造函数的第一个参数,
//对象表示在5秒后,计时结束,会被触发
boost::asio::deadline_timer timer(io_service, boost::posix_time::seconds(5));
//启动一个异步操作,非阻塞,5秒后执行handler函数,此时只是传入了函数名称,并没有调用
timer.async_wait(handler);
//wait()函数为阻塞等待
//timer.wait();
//此时run()函数将阻塞等待,防止程序结束,且此时控制权被操作系统接管,这样才能调用 handler函数
io_service.run();
}
使用多线程时,不要绑定多个线程到单个 I/O 服务,而是创建多个 I/O 服务。 然后每一个 I/O 服务使用一个线程。如果 I/O 服务的数量与系统的处理器内核数量相匹配,则异步操作都可以在各自的内核上执行,这样每一个异步操作连同它们的句柄就可以局部化执行。
#include
#include
#include
void handler1(const boost::system::error_code &ec)
{
std::cout << "5 s." << std::endl;
}
void handler2(const boost::system::error_code &ec)
{
std::cout << "5 s." << std::endl;
}
boost::asio::io_service io_service1;
boost::asio::io_service io_service2;
void run1()
{
io_service1.run();
}
void run2()
{
io_service2.run();
}
int main()
{
boost::asio::deadline_timer timer1(io_service1, boost::posix_time::seconds(5));
timer1.async_wait(handler1);
boost::asio::deadline_timer timer2(io_service2, boost::posix_time::seconds(5));
timer2.async_wait(handler2);
boost::thread thread1(run1);
boost::thread thread2(run2);
thread1.join();
thread2.join();
}
以下例子使用了 boost::asio::ip::tcp::socket
类来建立与中另一台PC的连接,并下载 'Highscore' 主页;就象一个浏览器在指向 www.highscore.de 时所要做的。
#include
#include
#include
#include
//I/O服务
boost::asio::io_service io_service;
//完成域名->IP的解析
boost::asio::ip::tcp::resolver resolver(io_service);
//网络通信对象
boost::asio::ip::tcp::socket sock(io_service);
//数据接收缓冲区
boost::array buffer;
void read_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
if (!ec)
{
std::cout << std::string(buffer.data(), bytes_transferred) << std::endl;
//再次读取数据,防止数据没有接收完毕
sock.async_read_some(boost::asio::buffer(buffer), read_handler);
}
}
void connect_handler(const boost::system::error_code &ec)
{
if (!ec)
{
//网络连接成功,发生请求,并准备接收数据
boost::asio::write(sock, boost::asio::buffer("GET / HTTP/ 1.1\r\nHost: highscore.de\r\n"));
sock.async_read_some(boost::asio::buffer(buffer), read_handler);
}
}
void resolve_handler(const boost::system::error_code &ec, boost::asio::ip::tcp::resolver::iterator it)
{
if (!ec)
{
//域名解析成功
sock.async_connect(*it, connect_handler);
}
}
int main()
{
//欲查询的域名及端口号
boost::asio::ip::tcp::resolver::query query("www.highscore.de", "80");
//异步开始解析,成功或出错,将主动调用resolve_handler()函数
resolver.async_resolve(query, resolve_handler);
//控制交给操作系统
io_service.run();
system("pause");
}
开始执行后,该应用将创建一个类型为 boost::asio::ip::tcp::resolver::query
的对象 query,表示一个查询,其中含有名字 www.highscore.de 以及互联网常用的端口80。 这个查询被传递给 async_resolve()
方法以解析该名字。
当域名解析的过程完成后,resolve_handler()
被调用,检查域名是否能被解析。 如果解析成功,则存有错误条件的对象 ec 被设为0。 只有在这种情况下,才会相应地访问 socket 以创建连接。 服务器的地址是通过类型为 boost::asio::ip::tcp::resolver::iterator
的第二个参数来提供的。
调用了 async_connect()
方法之后,connect_handler()
会被自动调用。 在该句柄的内部,会访问 ec 对象以检查连接是否已建立。 如果连接是有效的,则对相应的 socket 调用 async_read_some()
方法,启动读数据操作。 为了保存接收到的数据,要提供一个缓冲区作为第一个参数。
每当有一个或多个字节被接收并保存至缓冲区时,read_handler()
函数就会被调用。 准确的字节数通过 std::size_t
类型的参数 bytes_transferred 给出。 同样的规则,该句柄应该首先看看参数 ec 以检查有没有接收错误。 如果是成功接收,则将数据写出至标准输出流。
请留意,read_handler()
在将数据写出至 std::cout 之后,会再次调用 async_read_some()
方法。 这是必需的,因为无法保证仅在一次异步操作中就可以接收到整个网页。 async_read_some()
和 read_handler()
的交替调用只有当连接被破坏时才中止,如当 web 服务器已经传送完整个网页时。 这种情况下,在 read_handler()
内部将报告一个错误,以防止进一步将数据输出至标准输出流,以及进一步对该 socket 调用 async_read()
方法。 这时该例程将停止,因为没有更多的异步操作了。
下面再给出一个服务器的例子:
#include
#include
boost::asio::io_service io_service;
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), 80);
boost::asio::ip::tcp::acceptor acceptor(io_service, endpoint);
boost::asio::ip::tcp::socket sock(io_service);
std::string data = "HTTP/1.1 200 OK\r\nContent-Length: 13\r\n\r\nHello, world!";
void write_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
}
void accept_handler(const boost::system::error_code &ec)
{
if (!ec)
{
boost::asio::async_write(sock, boost::asio::buffer(data), write_handler);
}
}
int main()
{
acceptor.listen();
acceptor.async_accept(sock, accept_handler);
io_service.run();
}
类型为 boost::asio::ip::tcp::acceptor
的 I/O 对象 acceptor - 被初始化为指定的协议和端口号 - 用于等待从其它PC传入的连接。 初始化工作是通过 endpoint 对象完成的,该对象的类型为 boost::asio::ip::tcp::endpoint
,将本例子中的接收器配置为使用端口80来等待 IP v4 的传入连接,这是 WWW 通常所使用的端口和协议。
接收器初始化完成后,main()
首先调用 listen()
方法将接收器置于接收状态,然后再用 async_accept()
方法等待初始连接。 用于发送和接收数据的 socket 被作为第一个参数传递。
当一个PC试图建立一个连接时,accept_handler()
被自动调用。 如果该连接请求成功,就执行自由函数 boost::asio::async_write()
来通过 socket 发送保存在 data 中的信息。 boost::asio::ip::tcp::socket
还有一个名为 async_write_some()
的方法也可以发送数据;不过它会在发送了至少一个字节之后调用相关联的句柄。 该句柄需要计算还剩余多少字节,并反复调用 async_write_some()
直至所有字节发送完毕。 而使用 boost::asio::async_write()
可以避免这些,因为这个异步操作仅在缓冲区的所有字节都被发送后才结束。
在这个例子中,当所有数据发送完毕,空函数 write_handler()
将被调用。 由于所有异步操作都已完成,所以应用程序终止。 与其它PC的连接也被相应关闭。