产品经理的概念在不断泛化。近些年来,随着互联网行业的发展,越来越多的企业意识到了大数据和精细化运营的重要性,为了更好地挖掘数据的价值,指导业务的优化和发展,数据产品经理应运而生,他们基于数据分析方法发现问题,并提炼关键要素,设计产品来实现商业价值。
虽为产品经理,但要真正解决核心问题,不免要在前期和中期进行大量的数据分析工作,那么,实用的数据分析方法有哪些呢?
一、业务分析类
1.1 杜邦分析法
杜邦分析法目前主要用于财务领域,通过财务比率的关系来分析财务状况,其核心要点是将一个大的问题拆分为更小粒度的指标,以此了解问题出在了哪儿,从而对症下药。
以电商行业为例,GMV(网站成交金额)是考核业绩最直观的指标,当GMV同比或环比出现下滑时候,需要找到影响GMV的因素并逐一拆解。
GMV下降如果是因下单用户减少所造成的,那么是访客数(流量)减少了,还是转化率下降了呢?如果是访客数减少了,那是因为自然流量减少了,还是因为营销流量不足?
如果是自然流量下降的话,可能需要在用户运营和产品运营端发力,如果是营销流量不足,那么可以通过营销活动或者站外引流的形式增加曝光量。
同样,如果是转化率的问题,那么需要对用户进行细分,针对不同阶段的用户采取不同的运营策略,关于用户的部分,这里不做赘述,有兴趣的朋友可以关注后面的文章。
最后,如果是因为客单价不高,那么需要进行定价及促销的方案优化,比如识别具有GMV提升潜力的商品进行定价优化,评估当前促销的ROI,针对选品、力度和促销形式进行优化。同时通过关联商品的推荐或商品套装促销的形式,激发用户购买多件商品,也可以有效提高客单价。
1.2 同比热力图分析法
同比热力图分析法这个名称是我自己造的,其实无非是把各个业务线的同比数据放到一起进行比较,这样能更为直观地了解各个业务的状况。
构建一张同比热力图大致需要三步:
按照杜邦分析法将核心问题进行拆解,这里仍以电商为例,我们将GMV拆成了流量、转化率、商品均价和人均购买量,即GMV=流量*转化率*商品均价*人均购买量;
计算每个业务各项指标的同比数据;
针对每一项指标,对比各业务的同比高低并设定颜色渐变的条件格式,以上图中的转化率同比为例,业务5转化率同比最高,为深橙底色,业务3转化率同比最低且为负值,因此设定为蓝色底色加红色字体。
通过同比热力图的分析,首先,可以通过纵向对比了解业务自身的同比趋势,其次,可以通过横向对比了解自身在同类业务中的位置,此外,还可以综合分析GMV等核心指标变动的原因。
除了电商业务的分析以外,同比热力图同样适用于互联网产品数据指标的监控及分析,该分析方法的关键点在于拆解核心指标,在本文后面的产品运营类方法中将会介绍相关指标的拆解方法。
1.3 类BCG矩阵
BCG矩阵大家都非常熟悉了,以市场占有率和增长率为轴,将坐标系划分为四个象限,用于判断各项业务所处的位置。
这里想讲的并非传统的BCG矩阵,而是BCG矩阵的变阵,或者叫类BCG矩阵。
根据不同的业务场景和业务需求,我们可以将任意两个指标作为坐标轴,从而把各类业务或者用户划分为不同的类型。
比如可以以品牌GMV增长率和占有率构建坐标系,来分析各品牌的状况,从而帮助业务方了解到哪些品牌是未来的明星品牌,可以重点发力,哪些品牌处于弱势且增长匮乏,需要优化品牌内的产品布局。
除此之外,我们还可以根据以下场景构建类BCG矩阵:
分析商品引流能力和转化率:流量份额-转化率
分析商品对毛利/GMV的贡献:毛利率-销售额
基于RFM分析用户的价值:访问频率-消费金额
按照上述方法,大家可以根据需求大开脑洞,按照一定标准对研究对象进行分类分析。
二、用户分析类
2.1 TGI指数
在分析用户时,通常的做法是将目标用户进行分类,然后对比各类用户与总体之间的差异性,TGI指数提供了一个很好的方法,来反映各类用户群体在特定研究范围(如地理区域、人口统计、媒体偏好等)内的强势或弱势。
TGI指数=用户分类中具有某一特征的群体所占比例/总体中具有相同特征的群体所占比例*100
比如在分析用户的年龄段时,可以通过TGI指数对比各用户分类与总体在各年龄段的差异,设用户分类1中16-25岁的用户占比为4%,而总体中16-25岁的用户占比为8.3%,那么用户分类1在16-25岁用户中的TGI指数为4%/8.3%=48。依照这一方法,我们可以对各类用户在各年龄段的TGI指数进行对比。
如上图所示,各类目标用户在16-25岁这个年龄段的占比都比总体小(TGI指数<100),其中分类1的用户年龄偏大,因为该类用户在36岁以上各个年龄段的TGI指数都明显高于100,且同时高于其他三类用户。
所以,在分析用户画像时,需要根据场景进行用户分类,并对比各类用户与总体间的差异,这样才能保证分析结果的可信性和适用性,而TGI指数就是很好的对比指标。当前在互联网领域,除了用户实名数据以外,其他用户的画像维度一般都通过建立模型进行判断,因此无法完全保证准确性,但不同于小样本调研,大数据分析是能容忍一定数据误差的,不过,这一切都要建立在对比的基础上。
2.2 LRFMC模型
RFM模型是客户关系管理中最常用的模型,但这一模型还不够完善,比如对于M(Money),即消费金额相等的两个用户而言,一个是注册两年的老用户,一个是刚注册的新用户。对于企业来说,这两个用户的类型和价值就完全不同,因此我们需要更全面的模型。
LRFMC模型提供了一个更完整的视角,能更全面地了解一个用户的特征,LRFMC各个维度的释义如下:
L(lifetime):代表从用户第一次消费算起, 至今的时间,代表了与用户建立关系的时间长度,也反映了用户可能的活跃总时间。
R(Recency):代表用户最近一次消费至今的时间长度,反映了用户当前的活跃状态。
F(Frequency):代表用户在一定时间内的消费频率,反映了用户的忠诚度。
M(Monetary):代表用户在一定时间内的消费金额,反映了用户的购买能力。
C(CostRatio):代表用户在一定时间内消费的折扣系数,反映了用户对促销的偏好性。
以去哪儿的业务为例,通过LRFMC模型可以综合分析用户的习惯偏好和当前状态,从而指导精准营销方案的实施。
L(lifetime):用户来多久了?
R(Recency) :用户最近是否有消费,如果来了很长时间都未消费,是否需要进行唤醒?
F(Frequency) :用户出行的频率如何,如果是固定周期出行,是否应该进行复购提醒?
M(Monetary) :用户的消费金额是多少,是单价高(购买头等舱),还是频次高?
C(CostRatio):用户对折扣的偏好如何,是为用户增加权益还是降价促销?
三、产品运营类
产品运营是一个长期的过程,需要定期对产品的使用数据进行监控,通过用户行为分析发现问题,从而确定运营的方向,同时也可以用于评估运营的效果。
产品运营的常用指标如下:
使用广度:总用户数,月活;
使用深度:每人每天平均浏览次数,平均访问时长;
使用粘性:人均使用天数;
综合指标:月访问时长=月活*人均使用天数*每人每天平均浏览次数*平均访问时长。
产品所处阶段不同,运营的侧重点也会有所不同。在产品初期,核心的工作是拉新,应该更加关注产品的使用广度,而产品的中后期,应该更加注重使用深度和使用粘性的提升。
对于不同的产品也需根据产品的性质来确定核心指标,比如,对于社交类产品,使用广度和使用粘性至关重要,而对于一些中台分析类产品,提升使用深度和使用粘性更有意义。
四、结语
在一款数据产品诞生前,应该是先有数据,再有分析,然后才是产品,分析的广度和深度直接决定了产品的定位和价值。
如果是做一款数据报表类的产品,那么需要了解核心指标,并建立综合指标的评估体系。如果是做一款分析决策类产品,那么还需要基于业务需求,将现有数据指标进行解构再重构。
以上内容仅仅是提供了一些基础工具和思考方向,数据产品经理是一个新兴的分支,目前还没有成熟的学习体系,未来还需继续深入浅出,和大家共同成长。
数极客是国内新一代用户行为分析平台,支持无埋点采集、前端代码埋点采集、后端代码埋点采集等多种混合数据采集方式, 自动监测网站推广、APP推广、小程序推广等多种推广渠道,30多种数据可视化效果,是增长黑客必备的大数据分析工具,支持APP数据分析和网站分析及用户画像,独创了6大转化率分析模型,是用户行为分析领域首家应用定量分析与定性分析方法的数据分析产品,运用数极客用户行为录屏系统,可以分析并优化用户体验的细节,基于用户行为分析系统,提供了会员营销系统和A/B测试工具两大数据智能应用解决方案,使得企业可以快速的实现数据驱动增长。
本文由 @Mr.墨叽 原创
题图来自 Unsplash ,基于 CC0 协议