poj_2480 Longge's problem(素因子分解+积性函数+欧拉phi函数)

Longge's problem
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8297   Accepted: 2765

Description

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.

Input

Input contain several test case.
A number N per line.

Output

For each N, output ,∑gcd(i, N) 1<=i <=N, a line

Sample Input

2
6

Sample Output

3
15
 
  
 
  
 
  
 
  
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define FOP freopen("data.txt","r",stdin)
#define FOP2 freopen("data1.txt","w",stdout)
#define inf_LL 4223372036854775807
#define inf 0x3f3f3f3f
#define maxn 10010
#define mod 1000000007
#define PI acos(-1.0)
#define LL long long
using namespace std;

int p[maxn], k[maxn], pn; //n = p1^k1+p2^k2+...
void get_factor(int n)
{
    pn = 0;
    int m = (int)sqrt(n+0.5);
    for(int i = 2; i <= m; i++) if(n%i == 0)
    {
        p[pn] = i, k[pn] = 0;
        while(n % i == 0){ k[pn]++; n /= i; }
        pn++;
    }
    if(n != 1) { k[pn] = 1; p[pn++] = n; }
}

int main()
{
    int n;
    while(~scanf("%d", &n))
    {
        LL ans = n;
        get_factor(n);

        for(int i = 0; i < pn; i++)
        {
            ans = ans + ans*k[i]*(p[i]-1)/p[i];
        }

        printf("%lld\n", ans);
    }
    return 0;
}


你可能感兴趣的:(poj_2480 Longge's problem(素因子分解+积性函数+欧拉phi函数))