MapReduce核心流程梳理

MapReduce的大概流程:
(1)maptask从目标文件中读取数据
(2)mapper的map方法处理每一条数据,输出到文件中
(3)reducer读取map的结果文件,进行分组,把每一组交给reduce方法进行处理,最后输出到指定路径。
MapReduce核心流程梳理_第1张图片
这是最基本的流程,有助于快速理解MapReduce的工作方式。
通过上面的几个示例,我们要经接触了一些更深入的细节,例如mapper的inputform中还有RecordReader、reducer中还有GroupingComparator。
下面就看一下更加深入的处理流程。

1、Maptask中的处理流程

(1)读文件流程
MapReduce核心流程梳理_第2张图片
目标文件会被按照规划文件进行切分,inputformat调用RecordReader读取文件切片,RecordReader会生成key value对儿,传递给Mapper的mao方法。
(2)写入结果文件的流程
从Mapper的map方法调用context.write之后,到形成结果数据文件这个过程是比较复杂的。
MapReduce核心流程梳理_第3张图片
context.write不是直接写入文件,而是把数据交给OutputCollector,OutputCollector把数据写入‘环形缓冲区’。‘环形缓冲区’中的数据会进行排序。
因为缓冲区的大小是有限制的,所以每当快满时(达到80%)就要把其中的数据写出去,这个过程叫做数据溢出。
溢出到一个文件中,溢出过程会对这批数据进行分组、比较操作,然后吸入文件,所以溢出文件中的数据是分好区的,并且是有序的。每次溢出都会产生一个溢出数据文件,所以会有多个。
当map处理完全数据后,就会对各个溢出数据文件进行合并,每个文件中相同区的数据放在一起,并再次排序,最后得到一个整体的结果文件,其中是分区且有序的。
这样就完成了map过程,读数据过程和写结果文件的过程联合起来如下图:
MapReduce核心流程梳理_第4张图片

2、Reducetask的处理流程

MapReduce核心流程梳理_第5张图片
reducetask去读每个maptask产生的结果文件中自己所负责的分区数据,读到自己本地。对多个数据文件进行合并排序,然后通过GroupingComparator进行分组,把相同key的数据放到一组。对每组数据调一次reduce方法,处理完成后写入目标路径文件。

3、整体流程

把map和reduce的过程联合起来:
MapReduce核心流程梳理_第6张图片

你可能感兴趣的:(大数据)