- C++贪心算法
kobe_zlx
c++贪心算法开发语言
目录一,定义二,特点三,使用四,步骤:1.将问题分解为若干个问题2.找出适合该题目的贪心策略3.求解每个子问题的最优解4.组合局部最优解五,例题:1,最优装载题目分析(个人想法):详见代码:2,删数问题题目分析:ACcode一,定义贪心算法(greedyalgorithm)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,得到的是在某种意义上的局部最优解二,特
- 零基础开发者的 Java 速成之道
飞算JavaAI开发助手
java开发语言
Java开发的高门槛常让新手望而却步,从需求分析到代码落地的复杂流程如同拦路虎。飞算JavaAI的"智能引导"功能以五大核心模块重构开发链路,通过全流程自动化与智能化设计,让零基础用户在24小时内掌握完整Java项目开发能力,堪称编程入门的"加速引擎"。一、需求解析:从抽象想法到具象任务的智能转化智能引导的首步是需求理解的数字化重构。当开发者输入业务描述(如"设计在线教育平台"),系统会启动三层处
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- 服务端渲染SSR:原理、实践与未来趋势
GISer_Jinger
前端javascriptvue.js
深入解析服务器端渲染(SSR):原理、实践与未来趋势在当今追求极致用户体验的Web开发领域,服务器端渲染(SSR)已成为解决性能与SEO难题的关键技术。本文将带你深入理解SSR的核心机制、应用场景及前沿实践。一、SSR的本质与工作原理SSR(Server-SideRendering)指在服务器端生成完整HTML页面并发送至浏览器的技术。与客户端渲染(CSR)不同,SSR的核心流程如下:请求解析:用
- 运筹系列91:vrp算法包PyVRP
IE06
运筹学人工智能
1.介绍PyVRP使用HGS(hybridgeneticsearch)算法求解VRP类问题。在benchmark上的评测结果如下,看起来还不错:2.使用例子2.1CVRPCOORDS=[(456,320),#location0-thedepot(228,0),#location1(912,0),#location2(0,80),#location3(114,80),#location4(570,1
- 《高等代数》线性相关和线性无关无关典型例题
代码小白菜菜
高等代数笔记高等代数
说明:此文章用于本人复习巩固,如果也能帮到大家那就更加有意义了。注:1)一般情况下题目要求证明哪个向量组线性相关或线性无关就用线性相关和线性无关的定义将等式写出来,然后再用适当的方法进行求解。2)在这题中,利用了行列式有解无解和线性相关和线性无关的关系进行判断是线性相关还是线性无关。
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 最长公共子序列长度的四种解法
小菜鸟派大星
C语言算法算法c语言
一.题目:求两个字符序列的最长公共字符子序列。给定两个字符串,求解这两个字符串的最长公共子序列(LongestCommonSequence)。比如字符串1:BDCABA;字符串2:ABCBDAB,则这两个字符串的最长公共子序列长度为4。二.解法1:递归解法1.设计思路:分析两个字符串的比较规律,可以发现字符串在进行比较的时候有三种情况:A.str1[i+1]与str2[j]比较;B.str1[i]
- matlab求解集合覆盖问题,贪心算法实践之集合覆盖问题
我不是小孩子
matlab求解集合覆盖问题
介绍贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。应用场景-集合覆盖问题假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。如何选择最少的广播台,让所有的地区都可以接收到信号image思路分析:如何找出覆
- 贪心算法(集合覆盖问题)
five-five
算法pythonjava动态规划贪心算法
贪心算法(集合覆盖问题)贪心算法介绍贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果应用场景-集合覆盖问题问题详情假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。如何选择最少的广播台,让所有的地区都可以接
- 高性能计算(HPC)计算:Fortran 语言如何助力有限元、流体力学、结构力学、复合材料、增材制造仿真?
源代码杀手
高性能计算HPC专栏制造人工智能
Fortran语言在科学计算领域拥有悠久而坚实的历史,尤其在有限元分析(FEA)、流体力学(CFD)、结构力学、复合材料建模以及增材制造仿真(AdditiveManufacturingSimulation)等工程仿真方向具有不可替代的作用。以下从这几个方向具体说明Fortran如何助力仿真工作:一、有限元分析(FEA)Fortran在有限元分析中的应用可谓根深蒂固,许多商用和开源FEA求解器如AB
- 2.2. 泛函分析讲义I-度量空间概述
吉星照MoMo
实变泛函与测度理论数学建模
泛函分析的三大空间自然是:度量空间、线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的度量空间是Frechet有意识地去引入一种抽象理论,使得这种理论能够将康托尔,沃尔泰拉以及阿尔泽拉等人的工作统一起来.内积空间是在求解积分方程的过程中创造出来的,赋范线性空间是巴拿赫系统地发展了Frechet的思想,以及利用了Hilbert空间l2,
- MAX7219数码管+RTC时钟——stm32
嵌入式学徒 未来评测学徒
stm32keilmdk物联网
rtc.c文件如下:具体请查看原子哥正点原子RTC实时时钟例程,发现BUG,求解决。-OpenEdv-开源电子网#include"sys.h"#include"delay.h"#include"rtc.h"#include"stdio.h"_calendar_objcalendar;//时钟结构体//staticvoidRTC_NVIC_Config(void)//{//NVIC_InitType
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 材料力学数值方法:有限元法(FEM)在流体力学中的应用_2024-08-04_00-17-21.Tex
chenjj4003
材料力学算法计算机视觉人工智能机器学习网络
材料力学数值方法:有限元法(FEM)在流体力学中的应用绪论有限元法的基本概念有限元法(FiniteElementMethod,FEM)是一种数值计算方法,用于求解复杂的工程问题,如结构力学、热传导、流体力学等。它将连续的物理域离散化为有限数量的、形状规则的子域,即“有限元”。每个子域内的物理量(如位移、压力、温度等)用多项式函数近似表示,通过在每个子域内应用物理定律(如牛顿第二定律、连续性方程等)
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- 01背包问题的一维数组解法
核心思想:fori:=1toNdoforj=Vdowntoc[i]doiff[j-c[i]]+w[i]>f[j]thenf[j]=f[j-c[i]]+w[i];背包问题九讲-P010-1背包问题在讲背包问题的时候老师说这是一个老鸟中的老鸟总结的,很全面也很简洁易懂,在此把内容贴上来,供大家一起交流学习。感谢原作者!题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解
- 第 2 部分 - 请求与响应
pythondjango
从这里开始,我们将深入介绍REST框架的核心内容。首先,让我们来了解一下几个基础且重要的构建模块。请求对象REST框架引入了一个Request对象,它扩展了普通的HttpRequest,并提供了更灵活的请求解析功能。Request对象的核心功能是request.data属性,它类似于request.POST,但在处理WebAPI时更为实用。request.POST#仅处理表单数据。仅适用于'POS
- 从指令设计到系统集成:提示词工具链与GPTs插件的效率革命
charles666666
人工智能自然语言处理语言模型知识图谱transformer
一、提示词工程工具链:概念与架构解析1.1为什么需要工具链?大模型交互的本质是“指令设计”,但人工编写提示词存在三大痛点:效率低(重复调试耗时)、质量不稳定(依赖个人经验)、复用性差(场景迁移成本高)。例如,某电商企业要求AI生成500种商品描述时,人工逐条调整提示词需耗费数周,且风格难以统一。工具链的价值在于通过模块化设计与自动化流程解决上述问题。其核心架构包含三个层级:需求解析层:将用户需求拆
- 动态规划之01背包问题
蓝澈1121
数据结构与算法动态规划算法java
动态规划算法动态规划算法介绍动态规划(DynamicProgramming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法动态规划算法与分治法类似,其基本思想也是将待解决问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解与分治法不同的是,适合于动态规划求解的问题。经分解得到子问题往往不是互相独立的。(即下一个子阶段的求解是建立在上一个子阶段的基
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- 2015 United Kingdom and Ireland Programming Contest (UKIEPC 2015)
Owen_Q
数学字符串模拟
2015年的icpc英国站,不到一百只过题队伍,可以算是icpc在英国刚起步的时候。ProblemBMountainBiking思路:作为本场的签到题,读懂题意之后,这题倒是更像一道数学题。给定n个坡面的角度,求解到达坡道底端的速度利用经典力学动力学公式即可直接求出./*AuthorOwen_Q*/#includeusingnamespacestd;typedeflonglongll;consti
- 008 【入门】算法和数据结构简介
要天天开心啊
算法专栏算法数据结构
算法与数据结构系统概览|[算法]-[基础]-[通用]一、算法分类与应用1.硬计算类算法|[算法]-[中级]-[通用]特点应用场景复杂度特征-精确求解问题-可能带来较高计算复杂度-大厂笔试/面试-ACM竞赛-所有程序员岗位必考⏱️通常为O(n)~O(n²)//[示例]快速排序算法-分治思想核心实现publicvoidquickSort(int[]arr,intleft,intright){if(le
- 【运筹优化】整数规划优化方法:割平面法详解 + Java调用Cplex代码实战
WSKH0929
人工智能#运筹优化java运筹学数学规划整数规划割平面法有效不等式
文章目录一、割平面法介绍二、有效不等式2.1有效不等式简介2.2强有效不等式三、常用有效不等式3.1Chvatal-GomoryCut3.2GomoryCut3.2.1纯整数规划模型3.2.2混合整数规划模型3.3MixedIntegerRoundingCut3.4CoveringCut四、Java调用Cplex代码实战4.1实战1:基于GomoryCut的割平面法求解IP一、割平面法介绍割平面法
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- (线性代数最小二乘问题)Normal Equation(正规方程)
音程
数学线性代数机器学习人工智能
NormalEquation(正规方程)是线性代数中的一个重要概念,主要用于解决最小二乘问题(LeastSquaresProblem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数)。以下是详细介绍:1.定义与数学表达式给定一个超定方程组(方程数量多于未知数):Ax=bA\mathbf{x}=\mathbf{b}Ax=b其中:A∈Rm×nA\in\mathbb{R}^{m
- Fast Image Deconvolution using Hyper-Laplacian Priors论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
FastImageDeconvolutionusingHyper-LaplacianPriors1.论文的研究目标与实际意义2.论文的创新方法2.1核心框架:交替最小化(AlternatingMinimization)2.2x子问题:频域FFT加速2.3w子问题:高效求解的核心创新2.3.1问题形式2.3.2查找表法(LUT)2.3.3解析解法(特定α\alphaα)2.3.4通用α\alphaα
- 数学实验matlab课后习题,数学实验练习题(MATLAB)
沈洲行
数学实验matlab课后习题
注意:在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题:1)30sinlimxmxmxx->-2)(4)cos,1000.0=xmxyey求3)21/20mxedx?(求近似值,可以先用inline定义被积函数,然后用quad命令)4)4224xdxmx+?50x=展开(最高次幂为8).2.对矩阵21102041Am-???=??-??,分别求逆矩阵
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement