networkx--四种网络模型

摘要:   NetworkX提供了4种常见网络的建模方法,分别是:规则图,ER随机图,WS小世界网络和BA无标度网络。   一. 规则图   规则图差不多是最没有复杂性的一类图,random_graphs.random_regular_graph(d, n)方法可以生成一个含有n个节点,每个节点有d个邻居节点的规则图。   下面一段示例代码,生成了包含20个节点、每个节点有3个邻居的规则

  NetworkX提供了4种常见网络的建模方法,分别是:规则图,ER随机图,WS小世界网络和BA无标度网络。

 

一. 规则图

  规则图差不多是最没有复杂性的一类图,random_graphs.random_regular_graph(d, n)方法可以生成一个含有n个节点,每个节点有d个邻居节点的规则图。

  下面一段示例代码,生成了包含20个节点、每个节点有3个邻居的规则图:

 1 import networkx as nx
 2 import matplotlib.pyplot as plt
 3 
 4 # regular graphy
 5 # generate a regular graph which has 20 nodes & each node has 3 neghbour nodes.
 6 RG = nx.random_graphs.random_regular_graph(3, 20)
 7 # the spectral layout
 8 pos = nx.spectral_layout(RG)
 9 # draw the regular graphy
10 nx.draw(RG, pos, with_labels = False, node_size = 30)
11 plt.show()

 

 


 

二、ER随机图

  ER随机图是早期研究得比较多的一类“复杂”网络,模型的基本思想是以概率p连接N个节点中的每一对节点。用random_graphs.erdos_renyi_graph(n,p)方法生成一个含有n个节点、以概率p连接的ER随机图:

 1 import networkx as nx
 2 import matplotlib.pyplot as plt
 3 
 4 # erdos renyi graph
 5 # generate a graph which has n=20 nodes, probablity p = 0.2.
 6 ER = nx.random_graphs.erdos_renyi_graph(20, 0.2)
 7 # the shell layout
 8 pos = nx.shell_layout(ER)
 9 nx.draw(ER, pos, with_labels = False, node_size = 30)
10 plt.show()

 

三、WS小世界网络

  用random_graphs.watts_strogatz_graph(n, k, p)方法生成一个含有n个节点、每个节点有k个邻居、以概率p随机化重连边的WS小世界网络。

  下面是一个例子:

 1 import networkx as nx
 2 import matplotlib.pyplot as plt
 3 
 4 # WS network
 5 
 6 # generate a WS network which has 20 nodes,
 7 # each node has 4 neighbour nodes,
 8 # random reconnection probability was 0.3.
 9 WS = nx.random_graphs.watts_strogatz_graph(20, 4, 0.3)
10 # circular layout
11 pos = nx.circular_layout(WS)
12 nx.draw(WS, pos, with_labels = False, node_size = 30)
13 plt.show()

四、BA无标度网络

  用random_graphs.barabasi_albert_graph(n, m)方法生成一个含有n个节点、每次加入m条边的BA无标度网络。

  下面是一个例子:

 1 import networkx as nx
 2 import matplotlib.pyplot as plt
 3 
 4 # BA scale-free degree network
 5 # generalize BA network which has 20 nodes, m = 1
 6 BA = nx.random_graphs.barabasi_albert_graph(20, 1)
 7 # spring layout
 8 pos = nx.spring_layout(BA)
 9 nx.draw(BA, pos, with_labels = False, node_size = 30)
10 plt.show()


 



 

networkx--四种网络模型

你可能感兴趣的:(networkx--四种网络模型)