- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- JVM(9)——详解Serial垃圾回收器
十六点五
jvmjava开发语言后端
Serial垃圾回收器是JVM最古老、最基础、最简单的垃圾回收器,也是理解其他更复杂回收器的基础。一、Serial回收器的定位与设计目标核心特点:单线程(Single-Threaded)这是Serial回收器最根本的特征。无论是进行垃圾标记(Marking)、清除(Sweeping)、复制(Copying)还是整理(Compacting),它都只使用一个单独的线程来执行所有垃圾回收工作。工作模式:
- 008 【入门】算法和数据结构简介
要天天开心啊
算法专栏算法数据结构
算法与数据结构系统概览|[算法]-[基础]-[通用]一、算法分类与应用1.硬计算类算法|[算法]-[中级]-[通用]特点应用场景复杂度特征-精确求解问题-可能带来较高计算复杂度-大厂笔试/面试-ACM竞赛-所有程序员岗位必考⏱️通常为O(n)~O(n²)//[示例]快速排序算法-分治思想核心实现publicvoidquickSort(int[]arr,intleft,intright){if(le
- 区块链技术概述:从比特币到Web3.0
闲人编程
Python区块链50讲区块链web3python元宇宙比特币安全
目录区块链技术概述:从比特币到Web3.0引言:数字革命的下一篇章1.区块链技术基础1.1区块链定义与核心特征1.2区块链数据结构可视化2.比特币:区块链的开端2.1比特币的核心创新2.2比特币交易生命周期3.以太坊与智能合约革命3.1以太坊的核心创新3.2智能合约执行流程4.Web3.0:互联网的新范式4.1Web3.0的核心特征4.2Web3技术栈5.Python实现简易区块链系统5.1区块类
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 人工智能-基础篇-5-建模方式(判别式模型和生成式模型)
机器学习包括了多种建模方式,其中判别式建模(DiscriminativeModel)和生成式建模是最常见的两种。这两种建模方式都可以通过深度学习技术来实现,并用于创建不同类型的模型。简单来说:想要创建一个模型,依赖需求需要合适的建模方式来创建这个模型。通常建模方式主要分为两大类。一类是判别式模型,针对输入数据给出特定的输出。如:判断一张图片是猫还是狗,直接学习“猫”和“狗”的特征差异(如耳朵形状、
- 使用 Laravel + Redis 优化 MySQL 多字段 DISTINCT 查询性能
在高并发业务场景中,频繁执行MySQL的SELECTDISTINCT查询可能会成为性能瓶颈。本文将介绍一个实际案例,并通过Laravel+Redis缓存机制实现查询优化。背景需求我们有一个MySQL表,数据量约为50万条,字段结构如下:表字段:a,b,c,d,e,f,g字段特征:每个字段都是枚举类型,枚举值数量从几十到两百不等字段a已建立索引数据量:500,000条记录查询需求:每次查询时,字段a
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- 创意Python爱心代码
卖血买老婆
Python专栏python开发语言
目录一、用字符在控制台打印爱心图案1.1方法1:简单星号爱心说明1.2方法2:调整字符和形状二、turtle绘制爱心2.1turtle画心形及写字说明2.2动态跳动爱心三、用Matplotlib画心形曲线3.1标准心形曲线3.2LOVE动画心形(进阶)四、参数方程自定义爱心(数学美)心形参数方程公式五、更多创意:二维码嵌入、爱心表白墙六、总结完整参考目录用Python创意绘制爱心(Heart)的多
- 创意Python爱心代码分享的技术文章大纲
hshaohao
pygamepythonjavaphpc++c语言javascript
创意Python爱心代码分享的技术文章大纲引言介绍Python在创意编程中的应用,特别是图形和数学可视化方面的潜力。提及爱心代码作为经典示例,激发读者兴趣。基本爱心图案生成使用数学公式和简单图形库绘制基本爱心形状。示例代码利用matplotlib或turtle库实现。importnumpyasnpimportmatplotlib.pyplotaspltt=np.linspace(0,2*np.pi
- OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算
OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算【下载地址】OpenCV双目视觉棋盘格标定特征匹配及三维坐标计算OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算本资源库提供了基于OpenCV的双目视觉系统标定和三维重建基础教程,专注于利用棋盘格作为特征目标进行相机校准,特征点匹配以及随后的三维坐标计算项目地址:https://gitcode.com/open-source-toolki
- numpy - np.full 笔记
qq_43632431
numpy笔记opencv
np.full是NumPy中用于创建填充指定值的数组的函数。以下是详细说明:基本语法numpy.full(shape,fill_value,dtype=None,order='C')参数说明shape:数组的形状(元组或整数)fill_value:填充值dtype:数据类型(可选)order:内存布局,'C'或'F'(可选)基本用法示例1.创建一维数组importnumpyasnp#创建长度为5,
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 男性美颜SDK,专属方案,重塑男性魅力新维度
美摄科技
人工智能
在短视频与直播风靡的当下,美颜技术已成为用户表达自我、提升视觉体验的核心工具。然而,传统美颜方案往往以女性审美为基准,过度追求“无瑕肌肤”与“柔和轮廓”,导致男性用户在美颜后易出现面部细节丢失、特征模糊等问题,甚至失去原本的阳刚气质。美摄科技敏锐洞察这一痛点,推出男性美颜SDK专属方案,以智能算法与精细化调校为核心,为男性用户打造自然、立体、富有细节的美颜体验,让每一次出镜都彰显独特魅力。一、专属
- 【C# + HALCON 机器视觉】机器视觉在汽车内饰板塑料部件装配中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#HALCON机器视觉汽车零部件装配内饰装配形状匹配人机交互
摘要:本文聚焦C#与HALCON技术在汽车内饰板塑料部件自动化装配领域的深度应用,详细阐述基于形状匹配算法的视觉定位技术、C#开发的人机交互界面及设备通信集成方案。通过完整的实操流程和代码示例,展示如何解决传统人工装配精度不稳定的问题,实现装配效率提升35%、良品率从92%提升至98%的显著成效,为汽车制造行业自动化升级提供技术参考。文章目录【C#+HALCON机器视觉】机器视觉在汽车内饰板塑料部
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- DAY 33 简单的神经网络
2401_84854050
python打卡神经网络深度学习人工智能
1.数据预处理(0)准备数据、划分数据#仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集fromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitimportnumpyasnp#加载鸢尾花数据集iris=load_iris()X=iris.data#特征数据y=iris.target
- 历史轨迹组件性能优化方案
欧阳天羲
性能优化前端
针对历史轨迹组件的性能优化,可从数据处理、渲染策略、内存管理和交互优化四个方面入手。以下是具体的优化方向和实现方案:一、数据处理优化1.轨迹数据抽稀算法原理:在不影响轨迹整体形状的前提下,减少轨迹点数量实现方案:采用Douglas-Peucker算法实现轨迹抽稀提供抽稀精度参数,根据地图缩放级别动态调整示例代码://轨迹抽稀函数exportconstsimplifyTrajectory=(poin
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 代码随想录|图论|04广度优先搜索理论基础
Paper Clouds
图论宽度优先算法数据结构leetcodec++
广搜的使用场景广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。当然,也有一些问题是广搜和深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。(我们会在具体题目讲解中详细来说)比如下面这个图,从start开始慢慢向外扩展,第4次扩展才到
- E.l.f. 将人工智能色彩匹配技术引入美妆领域,应用于 Pinterest 平台
marteker
人工智能
E.l.f.Cosmetics与Pinterest合作开发了一款名为「色彩e.l.f.nalysis」的人工智能色彩分析工具。在指定的微网站上,消费者可以上传自拍照,以获得色彩季节分析,并发现与他们独特特征相匹配的彩妆色调。参与者还将获得一个精选的Pinterest板,上面有可购买的E.l.f.产品。E.l.f.与Pinterest的洞察团队合作绘制季节性趋势,并与该平台上的创作者合作开发特定季节
- 《论三生原理》建立异构耦合范式?
AI辅助创作:《论三生原理》中的数学框架不属于传统代数、序或拓扑结构中任何一种单一类型,而是融合多种结构特征并引入文化符号转译机制的新型跨范式模型,其核心表现为以下三重属性:一、基础结构:参数化代数系统代数运算嵌入文化变量核心素数公式:p=3(2n+1)+2(2n+m+1)(n∈N,m∈{0,1,2,3,4})以整数环运算为基础(代数结构特性),但通过变量m的五行取值集合({0,1,2,3
- 【机器学习的五大核心步骤】从零构建一个智能系统
目录一、数据处理:一切从“数据”开始✅常见数据源✅关键任务二、特征工程:从“数据”中提取“洞察”✅常用方法✅高阶技巧三、建立模型:从“算法”到“智能”✅模型类型✅常见算法✅模型训练四、评估迭代:没有反馈,就没有智能✅常用评估指标✅迭代优化方法五、上线应用与持续优化:从“实验室”到“真实世界”✅模型部署方式✅持续优化总结:看懂全流程!延伸阅读推荐作者:一叶轻舟|AI应用开发者&技术博主日期:2025
- 剑指offer-6、旋转数组的最小数字
后端java
题⽬描述把⼀个数组最开始的若⼲个元素搬到数组的末尾,我们称之为数组的旋转。输⼊⼀个⾮递减排序的数组的⼀个旋转,输出旋转数组的最⼩元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的⼀个旋转,该数组的最⼩值为1。NOTE:给出的所有元素都⼤于0,若数组⼤⼩为0,请返回0。思路及解答在这⾥最重要的特征是⾮递减排序,也就是本来是递增的,如果旋转后会出现什么情况呢?肯定会出现先递增,再递减的情况
- LDPC纠错码:通过低密度奇偶校验码将逻辑量子比特的物理量子比特需求降低90%,仅需12个物理量子比特支撑1个逻辑量子比特,显著降低错误率
百态老人
量子计算
基于我搜索到的资料,LDPC(低密度奇偶校验)纠错码在量子计算中通过其独特的稀疏矩阵结构和高效解码算法,显著降低了逻辑量子比特所需的物理量子比特数量,同时提升错误容忍能力。以下从原理、应用机制、实验依据及影响机制四个维度展开分析:一、LDPC纠错码的核心原理与优势LDPC码是一种线性分组纠错码,其核心特征在于奇偶校验矩阵的稀疏性:稀疏矩阵结构校验矩阵$\mathbf{H}$中非零元素(即“1”)的
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——1.SimHash算法处理冗余信息的核心原理
SimHash算法处理冗余信息的核心原理一、SimHash算法的定位与核心目标二、SimHash算法的核心原理与执行流程1.**文本预处理与特征提取**2.**特征向量化与哈希映射**3.**特征向量聚合**4.**降维生成SimHash值**5.**相似性判断与冗余过滤**三、SimHash处理冗余信息的核心优势四、实际应用中的优化策略五、SimHash的局限性与补充方案一、SimHash算法的
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 深入解析C#委托:从类型声明到对象创建
钢铁男儿
C#图解教程c#java前端
摘要:委托是C#实现事件驱动和回调机制的核心技术,其设计理念体现了「将方法作为参数传递」的函数式编程思想。本文将系统解析委托的声明与实例化过程。一、委托类型声明:定义方法签名模板委托本质是一种类型安全的函数指针类型,声明规则如下:delegatevoidMyDel(intx);//声明委托类型关键特征以delegate关键字开头包含返回类型(如void)和参数列表(如intx)无方法体(仅定义方法
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>