- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 基于区块链技术的超级账本(Hyperledger) - 从理论到实战
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- 径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”
ningaiiii
机器学习与深度学习神经网络php人工智能
径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”1.引言径向基函数网络(RadialBasisFunctionNetwork,RBF)是一种特殊的前馈神经网络,它的核心思想是通过“灯塔”来照亮数据的分布。RBF网络使用径向基函数(如高斯函数)作为隐层神经元的激活函数,能够快速学习数据的局部特征,特别适合分类和函数逼近问题。2.算法原理2.1网络结构RBF网络的基本组成包括:输入层:接收原
- 无需插件,OmniGen 凭文本指令读懂图像,多样生成随心掌控
算家云
模型构建python开发语言AI模型图像生成文字转图像人工智能OmniGen
一、介绍OmniGen是一个统一的图像生成模型,可用于执行各种任务,包括但不限于文本到图像生成、主题驱动生成、身份保留生成、图像编辑和图像条件生成。OmniGen不需要额外的插件或操作,它可以根据文本提示自动识别输入图像中的特征(例如,所需的对象、人体姿势、深度映射)可以通过OmniGen灵活地控制图像生成:引用表达式生成:你可以输入多个图像,并使用简单的通用语言来引用这些图像中的对象。OmniG
- 智能体(AI Agent):概念、原理与应用,全面解析AI技术前沿!
和老莫一起学AI
人工智能学习数据库产品经理机器学习ai大模型
一、智能体概念的深度剖析1.1智能体(Agent)的本质智能体,作为人工智能领域的一颗璀璨明珠,是那些能够主动感知周遭环境、自主决策并付诸实践的系统实体。它们不仅拥有自主性、交互性、反应灵敏及高度适应性等鲜明特征,更在复杂多变的情境中展现出卓越的自我管理与任务执行能力。智能体的诞生,标志着人工智能技术从机械式的规则遵循迈向了更为灵活、智能的自主决策新时代。智能体的核心精髓在于其内置的学习与决策引擎
- 基于Spring Boot和Vue的人脸识别项目(源码)
AI人H哥会Java
JAVA大作业项目实战springbootvue.jsjava人工智能计算机视觉后端sql
背景随着人工智能技术的迅猛发展,生物识别技术的迅猛发展,人脸识别已经成为最具潜力的人工智能应用之一。它不仅在安全监控、金融支付、智能家居等多个领域得到了广泛应用,也逐渐进入日常生活场景。人脸识别作为一种生物特征识别技术,能够通过分析人脸图像中的特征点,实现对个体的身份识别。利用计算机视觉技术,系统能够快速从大量图片中定位并识别特定人脸,实现身份验证和信息检索。这一技术的应用,不仅提高了安全性,还提
- qwenvl 代码中的attention pool 注意力池如何理解,attention pool注意力池是什么?
OpenSani
AI大模型计算机视觉语言模型qwenvlLLM
qwenvl中的attentionpool如何理解,其实这就是一个概念的问题看qwenvl的huggingface的代码的时候,发现代码里有一个Resampler以及attn_pool,这和之前理解的连接池线程池表示资源复用的意思不太一样,查了一下:注意这里的pool和线程池连接池里面的pool不一样:深度学习中的池化:池化在深度学习中主要指通过滑动窗口对特征图进行下采样,提取最重要的特征,减少计
- 数字化转型的三个阶段:信息化、数字化、数智化
兴风键盘侠
计算机行业知识大数据创业创新
数字化转型(DigitalTransformation)是当前企业和社会发展的核心驱动力。它不仅是技术层面的变革,更是一种系统性、战略性的转型,涵盖了业务流程、管理模式以及企业文化等多个维度。数字化转型通常可以划分为三个阶段:信息化、数字化和数智化。本文将对这三个阶段进行详细剖析,帮助您理解每个阶段的特征、目标及实施要点。第一阶段:信息化(Informatization)定义与目标信息化是数字化转
- 【端到端模型】
W Y
端到端模型CNN
什么是端到端模型?端到端模型就像是一个超级智能的黑盒子。想象你要完成一个任务,比如把一张写着字的图片变成电脑里能编辑的文字(这是光学字符识别的任务)。传统的做法可能是先人工分析图片,找到文字的轮廓、笔画这些特征,然后用别的方法把这些特征转变成文字。但是端到端模型很厉害,你直接把图片丢进这个黑盒子,它自己就知道怎么从图片里的原始信息(一堆像素点)直接输出最后你想要的文字,中间不需要你去操心怎么提取特
- 【Block总结】CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!
AI浩
Block总结计算机视觉深度学习目标检测
论文信息标题:ConDSeg:AGeneralMedicalImageSegmentationFrameworkviaContrast-DrivenFeatureEnhancement作者:MengqiLei,HaochenWu,XinhuaLv,XinWang机构:中国地质大学(武汉),百度公司发表时间:2024年12月11日会议:AAAI2025论文:https://arxiv.org/pdf
- 风控系统之指标回溯,历史数据重跑
后端
个人博客:无奈何杨(wnhyang)个人语雀:wnhyang共享语雀:在线知识共享Github:wnhyang-Overview回顾默认你已经看过之前那篇风控系统指标计算/特征提取分析与实现01,Redis、Zset、模版方法。其中已经介绍了如何利用redis的zset结构完成指标计算,为了方便这篇文章的介绍,还是在正式开始本篇之前回顾一下。时间窗口zset是redis中的一种数据结构,表示有序集
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- C++ 面向对象(八股总结)
fadtes
C++八股c++开发语言
面向对象程序设计(Object-orientedprogramming,OOP)是种具有对象概念的程序编程典范,同时也是一种程序开发的抽象方针。面向对象三大特征——封装、继承、多态封装把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏。关键字:public,protected,private。不写默认为private。public成员:可以被任意
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 软考信安04~网络安全体系与网络安全模型
jnprlxc
软考~信息安全工程师web安全网络安全
1、网络安全体系概述1.1、网络安全体系概念网络安全体系是网络安全保障系统的最高层概念抽象,是由各种网络安全单元按照一定的规则组成的,共同实现网络安全的目标。网络安全体系包括法律法规政策文件、安全策略、组织管理、技术措施、标准规范、安全建设与运营、人员队伍、教育培训、产业生态、安全投入等多种要素。1.2、网络安全体系特征(1)整体性。网络安全体系从全局、长远的角度实现安全保障,网络安全单元按照一定
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- K210视觉识别模块
LS_learner
嵌入式嵌入式硬件
K210视觉识别模块是一款功能强大的AI视觉模块,以下是对其的详细介绍:一、核心特性强大的视觉识别功能:K210视觉识别模块支持多种视觉功能,包括但不限于人脸识别、口罩识别、条形码和二维码识别、特征检测、数字识别、颜色识别、路标识别和视觉巡线等。这些功能使得K210视觉识别模块在多个领域都有广泛的应用潜力。高性能的硬件支持:K210视觉识别模块基于RISC-V精简指令集的K210芯片设计,该芯片内
- 机器学习——认识有监督学习与无监督学习
伊一大数据&人工智能学习日志
机器学习机器学习学习人工智能
目录有监督学习与无监督学习有监督学习无监督学习监督学习与无监督学习的区别有监督学习与无监督学习有监督学习和无监督学习是机器学习中的两种主要学习方式,它们的主要区别在于数据的标注情况和学习的目标。有监督学习有监督学习中,数据集中的每个样本都有明确的标签或目标输出。学习的目标是通过对有标签数据的学习,建立输入特征和输出标签之间的映射关系,以便能够对新的、未见过的输入数据预测其相应的输出标签。常见的有监
- 网络安全拟态防御技术
网安墨雨
web安全安全网络
一.拟态防御拟态现象(MimicPhenomenon,MP)是指一种生物如果能够在色彩、纹理和形状等特征上模拟另一种生物或环境,从而使一方或双方受益的生态适应现象。按防御行为分类可将其列入基于内生机理的主动防御范畴,又可称之为拟态伪装(MimicGuise,MG)。如果这种伪装不仅限于色彩、纹理和形状上,而且在行为和形态上也能模拟另一种生物或环境的拟态伪装,我们称之为“拟态防御”(MimicDef
- PCL 计算点云的VFH特征
点云侠'
点云学习c++visualstudio开发语言算法3d
目录一、概述二、代码三、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,可放心复制粘贴。一、概述 VFH(ViewpointFeatureHistogram)特征是一种三维点云描述子,它结合了点云的局部几何信息和视点信息,以提高物体识别和分类的精度。VFH特征通过计算每个点云的法向量分布,生成一个308维的特征直方图,用于表示该点云的形状特征。
- cloud compare和 pcl读取点云因为viewpoint 配准不上
一个月可能改两次
c++base
pcd的默认viewpoint是0,0,0,1,0,0,0而在cloudcompare处理过后的iewpoint会改变,而每片点云的viewpoint都不一样所以会造成点云配准失败。针对CloudCompare软件处理过的pcd格式点云,在使用PCL进行特征点提取、配准等实验中最终显示结果出现点云位置偏差较大的问题,本博客给出解决方案。PCL处理的pcd格式点云数据,默认视点为:VIEWPOINT
- 大数据新视界 -- 大数据大厂之 Impala 性能优化:基于数据特征的存储格式选择(上)(19/30)
青云交
大数据新视界#Impala之道大数据Impala存储格式选择数据特征性能优化社交媒体数据金融数据
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- PCL 部分点云视点问题【2025最新版】
点云侠
PCL学习3d算法计算机视觉c++开发语言
目录一、问题概述二、解决方案1、软件实现2、代码实现三、调整之后博客长期更新,本文最近更新时间为:2025年1月18日。一、问题概述 针对CloudCompare软件处理过的pcd格式点云,在使用PCL进行特征点提取、配准等实验中最终显示结果出现点云位置偏差较大的问题,本博客给出解决方案。二、解决方案 PCL处理的pcd格式点云数据,默认视点为:VIEWPOINT0001000经CloudCo
- 图形和动画本地化
Logrus IT
笔记
图形和动画本地化是多媒体改编的一个关键方面,需要对技术技能和文化细微差别有深入的理解。当由母语人士和设计师进行时,这一过程达到了自动化系统通常无法复制的真实性和相关性水平。本土专业人士对文化偏好、象征主义和视觉美学有着固有的理解,这在图形和动画本地化时至关重要。颜色、形状和意象通常具有特定的含义,这些含义在不同文化中差异很大。例如,在中国,红色可能象征着好运和繁荣,但在世界其他地区,它也可能传达危
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>