(二)神经网络入门之Logistic回归(分类问题)

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:https://www.jianshu.com/p/d94e40e2df81


这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。

该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。

  • (一)神经网络入门之线性回归
  • Logistic分类函数
  • (二)神经网络入门之Logistic回归(分类问题)
  • (三)神经网络入门之隐藏层设计
  • Softmax分类函数
  • (四)神经网络入门之矢量化
  • (五)神经网络入门之构建多层网络

Logistic回归(分类问题)


这部分教程将介绍一部分:
* Logistic分类模型

我们在上次的教程中给出了一个很简单的模型,只有一个输入和一个输出。在这篇教程中,我们将构建一个二分类模型,输入参数是两个变量。这个模型在统计上被称为Logistic回归模型,网络结构可以被描述如下:

我们先导入教程需要使用的软件包。

import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.colors import colorConverter, ListedColormap
from matplotlib import cm

定义类分布

在教程中,目标分类t将从两个独立分布中产生,当t=1时,用蓝色表示。当t=0时,用红色表示。输入参数X是一个N*2的矩阵,目标分类t是一个N * 1的向量。更直观的表现,见下图。

# Define and generate the samples
nb_of_samples_per_class = 20  # The number of sample in each class
red_mean = [-1,0]  # The mean of the red class
blue_mean = [1,0]  # The mean of the blue class
std_dev = 1.2  # standard deviation of both classes
# Generate samples from both classes
x_red = np.random.randn(nb_of_samples_per_class, 2) * std_dev + red_mean
x_blue = np.random.randn(nb_of_samples_per_class, 2) * std_dev + blue_mean

# Merge samples in set of input variables x, and corresponding set of output variables t
X = np.vstack((x_red, x_blue))
t = np.vstack((np.zeros((nb_of_samples_per_class,1)), np.ones((nb_of_samples_per_class,1))))
# Plot both classes on the x1, x2 plane
plt.plot(x_red[:,0], x_red[:,1], 'ro', label='class red')
plt.plot(x_blue[:,0], x_blue[:,1], 'bo', label='class blue')
plt.grid()
plt.legend(loc=2)
plt.xlabel('$x_1$', fontsize=15)
plt.ylabel('$x_2$', fontsize=15)
plt.axis([-4, 4, -4, 4])
plt.title('red vs. blue classes in the input space')
plt.show()

Logistic函数和交叉熵损失函数

Logistic函数

我们设计的网络的目的是从输入的x去预测目标t。假设,输入x = [x1, x2],权重w = [w1, w2],预测目标t = 1。那么,概率P(t = 1|x, w)将是神经网络输出的y,即y = σ(x∗wT)。其中,σ表示Logistic函数,定义如下:

如果,对于Logistic函数和它的导数还不是很清楚的,可以查看这个教程,里面进行了详细描述。

交叉熵损失函数

对于这个分类问题的损失函数优化,我们使用交叉熵误差函数来解决,对于每个训练样本i,交叉熵误差函数定义如下:

如果我们要计算整个训练样本的交叉熵误差,那么只需要把每一个样本的值进行累加就可以了,即:

关于交叉熵误差函数更加详细的介绍可以看这个教程。

logistic(z)函数实现了Logistic函数,cost(y, t)函数实现了损失函数,nn(x, w)实现了神经网络的输出结果,nn_predict(x, w)实现了神经网络的预测结果。

# Define the logistic function
def logistic(z): 
    return 1 / (1 + np.exp(-z))

# Define the neural network function y = 1 / (1 + numpy.exp(-x*w))
def nn(x, w): 
    return logistic(x.dot(w.T))

# Define the neural network prediction function that only returns
#  1 or 0 depending on the predicted class
def nn_predict(x,w): 
    return np.around(nn(x,w))

# Define the cost function
def cost(y, t):
    return - np.sum(np.multiply(t, np.log(y)) + np.multiply((1-t), np.log(1-y)))
# Plot the cost in function of the weights
# Define a vector of weights for which we want to plot the cost
nb_of_ws = 100 # compute the cost nb_of_ws times in each dimension
ws1 = np.linspace(-5, 5, num=nb_of_ws) # weight 1
ws2 = np.linspace(-5, 5, num=nb_of_ws) # weight 2
ws_x, ws_y = np.meshgrid(ws1, ws2) # generate grid
cost_ws = np.zeros((nb_of_ws, nb_of_ws)) # initialize cost matrix
# Fill the cost matrix for each combination of weights
for i in range(nb_of_ws):
    for j in range(nb_of_ws):
        cost_ws[i,j] = cost(nn(X, np.asmatrix([ws_x[i,j], ws_y[i,j]])) , t)
# Plot the cost function surface
plt.contourf(ws_x, ws_y, cost_ws, 20, cmap=cm.pink)
cbar = plt.colorbar()
cbar.ax.set_ylabel('$\\xi$', fontsize=15)
plt.xlabel('$w_1$', fontsize=15)
plt.ylabel('$w_2$', fontsize=15)
plt.title('Cost function surface')
plt.grid()
plt.show()

梯度下降优化损失函数

梯度下降算法的工作原理是损失函数ξ对于每一个参数的求导,然后沿着负梯度方向进行参数更新。

参数w按照一定的学习率沿着负梯度方向更新,即w(k+1)=w(k)−Δw(k+1),其中Δw可以表示为:

对于每个训练样本i∂ξi/∂w计算如下:

其中,yi=σ(zi)是神经元的Logistic输出,zi=xi∗wT是神经元的输入。

在详细推导损失函数对于权重的导数之前,我们先这个教程中摘取几个推导。

参考上面的分步推导,我们可以得到下面的详细推导:

因此,对于每个权重的更新Δwj可以表示为:

在批处理中,我们需要将N个样本的梯度都进行累加,即:

在开始梯度下降算法之前,你需要对参数都进行一个随机数赋值过程,然后采用梯度下降算法更新参数,直至收敛。

gradient(w, x, t)函数实现了梯度∂ξ/∂wdelta_w(w_k, x, t, learning_rate)函数实现了Δw

# define the gradient function.
def gradient(w, x, t):
    return (nn(x, w) - t).T * x

# define the update function delta w which returns the 
#  delta w for each weight in a vector
def delta_w(w_k, x, t, learning_rate):
    return learning_rate * gradient(w_k, x, t)
梯度下降更新

我们在训练集X上面运行10次去做预测,下图中画出了前三次的结果,图中蓝色的点表示在第k次,w(k)的值。

# Set the initial weight parameter
w = np.asmatrix([-4, -2])
# Set the learning rate
learning_rate = 0.05

# Start the gradient descent updates and plot the iterations
nb_of_iterations = 10  # Number of gradient descent updates
w_iter = [w]  # List to store the weight values over the iterations
for i in range(nb_of_iterations):
    dw = delta_w(w, X, t, learning_rate)  # Get the delta w update
    w = w-dw  # Update the weights
    w_iter.append(w)  # Store the weights for plotting
# Plot the first weight updates on the error surface
# Plot the error surface
plt.contourf(ws_x, ws_y, cost_ws, 20, alpha=0.9, cmap=cm.pink)
cbar = plt.colorbar()
cbar.ax.set_ylabel('cost')

# Plot the updates
for i in range(1, 4): 
    w1 = w_iter[i-1]
    w2 = w_iter[i]
    # Plot the weight-cost value and the line that represents the update
    plt.plot(w1[0,0], w1[0,1], 'bo')  # Plot the weight cost value
    plt.plot([w1[0,0], w2[0,0]], [w1[0,1], w2[0,1]], 'b-')
    plt.text(w1[0,0]-0.2, w1[0,1]+0.4, '$w({})$'.format(i), color='b')
w1 = w_iter[3]  
# Plot the last weight
plt.plot(w1[0,0], w1[0,1], 'bo')
plt.text(w1[0,0]-0.2, w1[0,1]+0.4, '$w({})$'.format(4), color='b') 
# Show figure
plt.xlabel('$w_1$', fontsize=15)
plt.ylabel('$w_2$', fontsize=15)
plt.title('Gradient descent updates on cost surface')
plt.grid()
plt.show()

训练结果可视化

下列代码,我们将训练的结果进行可视化。

# Plot the resulting decision boundary
# Generate a grid over the input space to plot the color of the
#  classification at that grid point
nb_of_xs = 200
xs1 = np.linspace(-4, 4, num=nb_of_xs)
xs2 = np.linspace(-4, 4, num=nb_of_xs)
xx, yy = np.meshgrid(xs1, xs2) # create the grid
# Initialize and fill the classification plane
classification_plane = np.zeros((nb_of_xs, nb_of_xs))
for i in range(nb_of_xs):
    for j in range(nb_of_xs):
        classification_plane[i,j] = nn_predict(np.asmatrix([xx[i,j], yy[i,j]]) , w)
# Create a color map to show the classification colors of each grid point
cmap = ListedColormap([
        colorConverter.to_rgba('r', alpha=0.30),
        colorConverter.to_rgba('b', alpha=0.30)])

# Plot the classification plane with decision boundary and input samples
plt.contourf(xx, yy, classification_plane, cmap=cmap)
plt.plot(x_red[:,0], x_red[:,1], 'ro', label='target red')
plt.plot(x_blue[:,0], x_blue[:,1], 'bo', label='target blue')
plt.grid()
plt.legend(loc=2)
plt.xlabel('$x_1$', fontsize=15)
plt.ylabel('$x_2$', fontsize=15)
plt.title('red vs. blue classification boundary')
plt.show()

完整代码,点击这里


作者:chen_h
微信号 & QQ:862251340
简书地址:https://www.jianshu.com/p/d94e40e2df81

CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)
(二)神经网络入门之Logistic回归(分类问题)_第1张图片

你可能感兴趣的:(人工智能,人工智能)