图像处理
1、图像的内存分配与释放
(1) 分配内存给一幅新图像:
IplImage* cvCreateImage(CvSize size, int depth, int channels);
size: cvSize(width,height);
depth: 像素深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F
channels: 像素通道数. Can be 1, 2, 3 or 4.
各通道是交错排列的. 一幅彩色图像的数据排列格式如下:
b0 g0 r0 b1 g1 r1 ...
示例:
// Allocate a 1-channel byte image
IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
// Allocate a 3-channel float image
IplImage* img2=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
(2) 释放图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
cvReleaseImage(&img);
(3) 复制图像:
IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
IplImage* img2;
img2=cvCloneImage(img1); // 注意通过cvCloneImage得到的图像
// 也要用 cvReleaseImage 释放,否则容易产生内存泄漏
(4) 设置/获取感兴趣区域ROI: (ROI:Region Of Interest)
void cvSetImageROI(IplImage* image, CvRect rect);
void cvResetImageROI(IplImage* image);
CvRect cvGetImageROI(const IplImage* image);
大多数OpenCV函数都支持 ROI.
(5) 设置/获取感兴趣通道COI: (COI:channel of interest)
void cvSetImageCOI(IplImage* image, int coi); // 0=all
int cvGetImageCOI(const IplImage* image);
大多数OpenCV函数不支持 COI.
2、图像读写
(1) 从文件中读入图像:
IplImage* img=0;
img=cvLoadImage(fileName);
if(!img) printf("Could not load image file: %s\n",fileName);
支持的图像格式: BMP, DIB, JPEG, JPG, JPE, PNG, PBM, PGM, PPM,
SR, RAS, TIFF, TIF
OpenCV默认将读入的图像强制转换为一幅三通道彩色图像. 不过可以按以下方法修改读入方式:
img=cvLoadImage(fileName,flag);
flag: >0 将读入的图像强制转换为一幅三通道彩色图像
=0 将读入的图像强制转换为一幅单通道灰度图像
<0 读入的图像通道数与所读入的文件相同.
(2) 保存图像:
if(!cvSaveImage(outFileName,img)) printf("Could not save: %s\n", outFileName);
保存的图像格式由 outFileName 中的扩展名确定.
3、访问图像像素
(1) 假设你要访问第k通道、第i行、第j列的像素。
(2) 间接访问: (通用,但效率低,可访问任意格式的图像)
对于单通道字节型图像
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value, 注意cvGet2D与cvSet2D中坐标参数的顺序与其它opencv函数坐标参数顺序恰好相反.本函数中i代表y轴,即height;j代表x轴,即weight.
printf("intensity=%f\n",s.val[0]);
s.val[0]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
对于多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value
printf("B=%f, G=%f, R=%f\n",s.val[0],s.val[1],s.val[2]);
s.val[0]=111;
s.val[1]=111;
s.val[2]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
(3) 直接访问: (效率高,但容易出错)
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
((uchar *)(img->imageData + i*img->widthStep))[j]=111; (img->imageData即数组首指针,i为行数,img->widthStep每行所占字节数)
对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
(4) 基于指针的直接访问: (简单高效)
对于单通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
int height = img->height;
int width = img->width;
int step = img->widthStep;
uchar* data = (uchar *)img->imageData;
data[i*step+j] = 111;
对于多通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
int height = img->height;
int width = img->width;
int step = img->widthStep;
int channels = img->nChannels;
uchar* data = (uchar *)img->imageData;
data[i*step+j*channels+k] = 111;
对于多通道浮点型图像(假设图像数据采用4字节(32位)行对齐方式):
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
int height = img->height;
int width = img->width;
int step = img->widthStep;
int channels = img->nChannels;
float * data = (float *)img->imageData;
data[i*step+j*channels+k] = 111;
(5) 基于 c++ wrapper 的直接访问: (更简单高效)
首先定义一个 c++ wrapper ‘Image’,然后基于Image定义不同类型的图像:
template
{
private:
IplImage* imgp;
public:
Image(IplImage* img=0) {imgp=img;}
~Image(){imgp=0;}
void operator=(IplImage* img) {imgp=img;}
inline T* operator[](const int rowIndx) {
return ((T *)(imgp->imageData + rowIndx*imgp->widthStep));}
};
typedef struct{
unsigned char b,g,r;
} RgbPixel;
typedef struct{
float b,g,r;
} RgbPixelFloat;
typedef Image
typedef Image
typedef Image
typedef Image
对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
BwImage imgA(img);
imgA[i][j] = 111;
对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
RgbImage imgA(img);
imgA[i][j].b = 111;
imgA[i][j].g = 111;
imgA[i][j].r = 111;
对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
RgbImageFloat imgA(img);
imgA[i][j].b = 111;
imgA[i][j].g = 111;
imgA[i][j].r = 111;
4.图像转换
(1) 字节型图像的灰度-彩色转换:
cvConvertImage(src, dst, flags=0);
src = float/byte grayscale/color image
dst = byte grayscale/color image
flags = CV_CVTIMG_FLIP (垂直翻转图像)
CV_CVTIMG_SWAP_RB (置换 R 和 B 通道)
(2) 彩色图像->灰度图像:
// Using the OpenCV conversion:
cvCvtColor(cimg,gimg,CV_BGR2GRAY); // cimg -> gimg
// Using a direct conversion:
for(i=0;i
for(j=0;j
gimgA[i][j]= (uchar)(cimgA[i][j].b*0.114 +
cimgA[i][j].g*0.587 +
cimgA[i][j].r*0.299);
(3) 不同彩色空间之间的转换:
cvCvtColor(src,dst,code); // src -> dst
code = CV_
e.g.: CV_BGR2GRAY, CV_BGR2HSV, CV_BGR2Lab
5.绘图指令
(1) 绘制矩形:
// 在点 (100,100) 和 (200,200) 之间绘制一矩形,边线用红色、宽度为 1
cvRectangle(img, cvPoint(100,100), cvPoint(200,200), cvScalar(0,0,255), 1);
(2) 绘制圆形:
// 圆心为(100,100)、半径为20. 圆周绿色、宽度为1
cvCircle(img, cvPoint(100,100), 20, cvScalar(0,255,0), 1);
(3) 绘制线段:
// 在 (100,100) 和 (200,200) 之间、线宽为 1 的绿色线段
cvLine(img, cvPoint(100,100), cvPoint(200,200), cvScalar(0,255,0), 1);
(4) 绘制一组线段:
CvPoint curve1[]={10,10, 10,100, 100,100, 100,10};
CvPoint curve2[]={30,30, 30,130, 130,130, 130,30, 150,10};
CvPoint* curveArr[2]={curve1, curve2};
int nCurvePts[2]={4,5};
int nCurves=2;
int isCurveClosed=1;
int lineWidth=1;
cvPolyLine(img,curveArr,nCurvePts,nCurves,isCurveClosed,cvScalar(0,255,255),lineWidth);
void cvPolyLine( CvArr* img, CvPoint** pts, int* npts, int contours, int is_closed,
CvScalar color, int thickness=1, int line_type=8, int shift=0 );
img 图像。
pts 折线的顶点指针数组。
npts 折线的定点个数数组。也可以认为是pts指针数组的大小
contours 折线的线段数量。
is_closed 指出多边形是否封闭。如果封闭,函数将起始点和结束点连线。
color 折线的颜色。
thickness 线条的粗细程度。
line_type 线段的类型。参见cvLine。
shift 顶点的小数点位数
(5) 绘制一组填充颜色的多边形:
cvFillPoly(img,curveArr,nCurvePts,nCurves,cvScalar(0,255,255));
cvFillPoly用于一个单独被多边形轮廓所限定的区域内进行填充。函数可以填充复杂的区域,例如,有漏洞的区域和有交叉点的区域等等。
void cvFillPoly( CvArr* img, CvPoint** pts, int* npts, int contours,CvScalar color, int line_type=8, int shift=0 );
img 图像。
pts 指向多边形的数组指针。
npts 多边形的顶点个数的数组。
contours 组成填充区域的线段的数量。
color 多边形的颜色。
line_type 组成多边形的线条的类型。
shift 顶点坐标的小数点位数。
(6) 文本标注:
CvFont font;
double hScale=1.0;
double vScale=1.0;
int lineWidth=1;
cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth);
cvPutText (img,"My comment",cvPoint(200,400), &font, cvScalar(255,255,0));
其它可用的字体类型有: CV_FONT_HERSHEY_SIMPLEX, CV_FONT_HERSHEY_PLAIN, CV_FONT_HERSHEY_DUPLEX, CV_FONT_HERSHEY_COMPLEX, CV_FONT_HERSHEY_TRIPLEX, CV_FONT_HERSHEY_COMPLEX_SMALL, CV_FONT_HERSHEY_SCRIPT_SIMPLEX, CV_FONT_HERSHEY_SCRIPT_COMPLEX,
6.矩阵处理
1、矩阵的内存分配与释放
(1) 总体上:
OpenCV 使用C语言来进行矩阵操作。不过实际上有很多C++语言的替代方案可以更高效地完成。
在OpenCV中向量被当做是有一个维数为1的N维矩阵.
矩阵按行-行方式存储,每行以4字节(32位)对齐.
(2) 为新矩阵分配内存:
CvMat* cvCreateMat(int rows, int cols, int type);
type: 矩阵元素类型.
按CV_
示例:
CvMat* M = cvCreateMat(4,4,CV_32FC1);
(3) 释放矩阵内存:
CvMat* M = cvCreateMat(4,4,CV_32FC1);
cvReleaseMat(&M);
(4) 复制矩阵:
CvMat* M1 = cvCreateMat(4,4,CV_32FC1);
CvMat* M2;
M2=cvCloneMat(M1);
(5) 初始化矩阵:
double a[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
CvMat Ma=cvMat(3, 4, CV_64FC1, a);
//等价于:
CvMat Ma;
cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
(6) 初始化矩阵为单位矩阵:
CvMat* M = cvCreateMat(4,4,CV_32FC1);
cvSetIdentity(M); // does not seem to be working properl
2、访问矩阵元素
(1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元.
(2) 间接访问:
cvmSet(M,i,j,2.0); // Set M(i,j)
t = cvmGet(M,i,j); // Get M(i,j)
(3) 直接访问(假设矩阵数据按4字节行对齐):
CvMat* M = cvCreateMat(4,4,CV_32FC1);
int n = M->cols;
float *data = M->data.fl;
data[i*n+j] = 3.0;
(4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps):
CvMat* M = cvCreateMat(4,4,CV_32FC1);
int step = M->step/sizeof(float);
float *data = M->data.fl;
(data+i*step)[j] = 3.0;
(5) 对于初始化后的矩阵进行直接访问:
double a[16];
CvMat Ma = cvMat(3, 4, CV_64FC1, a);
a[i*4+j] = 2.0; // Ma(i,j)=2.0;
3、矩阵/向量运算
(1) 矩阵之间的运算:
CvMat *Ma, *Mb, *Mc;
cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc
cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc
cvMatMul(Ma, Mb, Mc); // Ma*Mb -> Mc
(2) 矩阵之间的元素级运算:
CvMat *Ma, *Mb, *Mc;
cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc
cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc
cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc
(3) 向量乘积:
double va[] = {1, 2, 3};
double vb[] = {0, 0, 1};
double vc[3];
CvMat Va=cvMat(3, 1, CV_64FC1, va);
CvMat Vb=cvMat(3, 1, CV_64FC1, vb);
CvMat Vc=cvMat(3, 1, CV_64FC1, vc);
double res=cvDotProduct(&Va,&Vb); // 向量点乘: Va . Vb -> res
cvCrossProduct(&Va, &Vb, &Vc); // 向量叉乘: Va x Vb -> Vc
注意在进行叉乘运算时,Va, Vb, Vc 必须是仅有3个元素的向量.
(4) 单一矩阵的运算:
CvMat *Ma, *Mb;
cvTranspose(Ma, Mb); // 转置:transpose(Ma) -> Mb (注意转置阵不能返回给Ma本身)
CvScalar t = cvTrace(Ma); // 迹:trace(Ma) -> t.val[0]
double d = cvDet(Ma); // 行列式:det(Ma) -> d
cvInvert(Ma, Mb); // 逆矩阵:inv(Ma) -> Mb
(5) 非齐次线性方程求解:
CvMat* A = cvCreateMat(3,3,CV_32FC1);
CvMat* x = cvCreateMat(3,1,CV_32FC1);
CvMat* b = cvCreateMat(3,1,CV_32FC1);
cvSolve(&A, &b, &x); // solve (Ax=b) for x
(6) 特征值与特征向量 (矩阵为方阵):
CvMat* A = cvCreateMat(3,3,CV_32FC1);
CvMat* E = cvCreateMat(3,3,CV_32FC1);
CvMat* l = cvCreateMat(3,1,CV_32FC1);
cvEigenVV(A, E, l); // l = A 的特征值(递减顺序)
// E = 对应的特征向量 (行向量)
(7) 奇异值分解(SVD):====
CvMat* A = cvCreateMat(3,3,CV_32FC1);
CvMat* U = cvCreateMat(3,3,CV_32FC1);
CvMat* D = cvCreateMat(3,3,CV_32FC1);
CvMat* V = cvCreateMat(3,3,CV_32FC1);
cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T
标志位使矩阵U或V按转置形式返回 (若不转置可能运算出错).
视频处理
1、从视频流中捕捉一帧画面
(1) OpenCV 支持从摄像头或视频文件(AVI格式)中捕捉帧画面.
(2) 初始化一个摄像头捕捉器:
CvCapture* capture = cvCaptureFromCAM(0); // capture from video device #0
(3) 初始化一个视频文件捕捉器:
CvCapture* capture = cvCaptureFromAVI("infile.avi");
(4) 捕捉一帧画面:
IplImage* img = 0;
if(!cvGrabFrame(capture)){ // capture a frame
printf("Could not grab a frame\n\7");
exit(0);
}
img=cvRetrieveFrame(capture); // retrieve the captured frame
若要从多个摄像头中同步捕捉画面,则须首先从每个摄像头中抓取一帧,紧接着要将被捕捉的帧画面恢复到一个IplImage*型图像中。(译注:这一过程其实可以用 cvQueryFrame() 函数一步完成)
(5) 释放视频流捕捉器:
cvReleaseCapture(&capture);
注意由视频流捕捉器得到的图像是由捕捉器分配和释放内存的,不需要单独对图像进行释放内存的操作。
2、获取/设置视频流信息
(1) 获取视频流设备信息:
cvQueryFrame(capture); // 在读取视频流信息前,要先执行此操作
int frameH = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);
int frameW = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
int fps = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FPS);
int numFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_COUNT);
统计总帧数仅对视频文件有效,但似乎不太准确(译注:也许OpenCV2.0中此问题已解决)
(2) 获取帧图信息:
float posMsec = cvGetCaptureProperty(capture, CV_CAP_PROP_POS_MSEC);
int posFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_POS_FRAMES);
float posRatio = cvGetCaptureProperty(capture, CV_CAP_PROP_POS_AVI_RATIO);
所抓取的帧的位置有三种表达方式:距离第一帧画面的时间间隔(毫秒为单位), 或者距离第一帧画面(序列号为0)的序列数. 第三种方式是按相对比率,第一帧的相对比率为0,最后一帧的相对比率为1. 此方式仅对读取视频文件时有效.
(3) 设置从视频文件抓取的第一帧画面的位置:
// start capturing from a relative position of 0.9 of a video file
cvSetCaptureProperty(capture, CV_CAP_PROP_POS_AVI_RATIO, (double)0.9);
注意此方法定位并不准确。
3、保存视频文件
(1) 初始化视频编写器:
CvVideoWriter *writer = 0;
int isColor = 1;
int fps = 25; // or 30
int frameW = 640; // 744 for firewire cameras
int frameH = 480; // 480 for firewire cameras
writer=cvCreateVideoWriter("out.avi",CV_FOURCC('P','I','M','1'),
fps,cvSize(frameW,frameH),isColor);
其它的编码器代号包括: CV_FOURCC('P','I','M','1') = MPEG-1 codec CV_FOURCC('M','J','P','G') = motion-jpeg codec (does not work well) CV_FOURCC('M', 'P', '4', '2') = MPEG-4.2 codec CV_FOURCC('D', 'I', 'V', '3') = MPEG-4.3 codec CV_FOURCC('D', 'I', 'V', 'X') = MPEG-4 codec CV_FOURCC('U', '2', '6', '3') = H263 codec CV_FOURCC('I', '2', '6', '3') = H263I codec CV_FOURCC('F', 'L', 'V', '1') = FLV1 codec 若编码器代号为 -1,则运行时会弹出一个编码器选择框.
(2) 保持视频文件:
IplImage* img = 0;
int nFrames = 50;
for(i=0;i cvGrabFrame(capture); // capture a frame img=cvRetrieveFrame(capture); // retrieve the captured frame // img = cvQueryFrame(capture); cvWriteFrame(writer,img); // add the frame to the file }
要查看所抓取到的帧画面,可以在循环中加入以下语句:
cvShowImage("mainWin", img);
key=cvWaitKey(20); // wait 20 ms
注意 cvWaitKey 参数应该不小于 20 ms,否则画面的显示可能出错.
(3) 释放视频编写器:
cvReleaseVideoWriter(&writer);