我们进行回归分析需要了解每个自变量对因变量的单纯效应,
多重共线性就是说自变量间存在某种函数关系,如果你的两个自变量间(X1和X2)存在函数关系,那么X1改变一个单位时,X2也会相应地改变,
此时你无法做到固定其他条件,单独考查X1对因变量Y的作用,你所观察到的X1的效应总是混杂了X2的作用,这就造成了分析误差,
使得对自变量效应的分析不准确,所以做回归分析时需要排除多重共线性的影响
讲讲共线性问题-简书
在统计学中,共线性即多重共线性(Multicollinearity)是指线性回归模型中的自变量(解释变量)之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。
共线性问题对线性回归模型有如下影响:
多重共线性判断依据:
一般若K<100,则认为多重共线性的程度很小,若是100<=K<=1000,则认为存在一般程度上的多重共线性,若是K>1000,则就认为存在严重的多重共线性。
当第i个变量和其他变量之间存在线性关系时,VIF趋于无穷大。所以 VIF 的大小反应了变量的共线性程度。一般地,当VIF大于5或10时,认为模型存在严重的共线性问题。
同时考虑参数显著性检验的 t 统计量:当存在共线性时,参数的标准差偏大,相应的 t 统计量会偏小,这样容易淘汰一些不应淘汰的解释变量,使统计检验的结果失去可靠性。
共线性问题解决方法
PCA降维适用于一般的多重共线性问题,尤其是对共线性较强的变量之间。起到了消除共线性的问题,优势明显。
第一:建立全部变量的回归方程
第二:分别建立单独的回归方程,依照t检验和拟合度依次加入各变量来构建回归方程
第三:判断新引入的变量,对于之前的系数影响是否显著,是否符合实际以及对于拟合度的变量,来选择是否将变量引入模型中。
岭回归是一种可用于共线性数据分析的有偏估计回归方法,它是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对条件数很大(病态数据)的拟合要强于最小二乘法。
ElasticNet回归同时兼顾了L1和L2惩罚项,当许多变量是相关的时候,Elastic-net是有用的。Lasso一般会随机选择其中一个,而Elastic-net则会选在两个。
相关性,是指两个变量的关联程度。一般地,从散点图上可以观察到两个变量有以下三种关系之一:两变量正相关、负相关、不相关。
客观现象之间存在的互相依存关系叫相关关系,全称为统计相关关系.有如下两个特点:
1.现象之间确实存在着数量上的依存关系.
2.现象之间数量上的关系是不确定、不严格的依存关系.
相关系数的绝对值在0.3以下是无直线相关,0.3以上是直线相关,0.3-0.5是低度相关,0.5-0.8是显著相关(中等程度相关),0.8以上是高度相关.
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线。
SVM的核心思想
http://lib.csdn.net/article/machinelearning/34998
SVM的分类思想本质上和线性回归LR分类方法类似,就是求出一组权重系数,在线性表示之后可以分类。我们先使用一组训练集来训练SVM中的权重系数,然后可以测试集进行分类。
说的更加更大上一些:SVM就是先训练出一个分割超平面(separation hyperplane), 然后该平面就是分类的决策边界,分在平面两边的就是两类。 显然,经典的SVM算法只适用于两类分类问题,当然,经过改进,低维特征映射到高维(核函数)之后,SVM也可以适用于多类分类问题。
我们希望找到离分隔超平面最近的点,确保它们离分隔面的距离尽可能远。这里点到分隔面的距离被称为间隔margin. 我们希望这个margin尽可能的大。支持向量support vector就是离分隔超平面最近的那些点,我们要最大化支持向量到分隔面的距离。
决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪
ID3、C4.5、CART的区别
这三个是非常著名的决策树算法。简单来说,ID3 使用信息增益作为选择特征的准则;C4.5 使用信息增益比作为选择特征的准则;CART 使用 Gini 指数作为选择特征的准则。
一、ID3
熵表示的是数据中包含的信息量大小。熵越小,数据的纯度越高,也就是说数据越趋于一致,这是我们希望的划分之后每个子节点的样子。
信息增益 = 划分前熵 - 划分后熵。信息增益越大,则意味着使用属性 A来进行划分所获得的 “纯度提升” 越大 **。也就是说,用属性A 来划分训练集,得到的结果中纯度比较高。
ID3 仅仅适用于二分类问题。ID3 仅仅能够处理离散属性。偏向选择取值较多特征.
二、C4.5
C4.5 克服了 ID3 仅仅能够处理离散属性的问题,以及信息增益偏向选择取值较多特征的问题,使用信息增益比来选择特征。信息增益比 = 信息增益 / 划分前熵
选择信息增益比最大的作为最优分裂特征。
C4.5 处理连续特征是先将特征取值排序,以连续两个值中间值作为划分标准。尝试每一种划分,并计算修正后的信息增益,选择信息增益最大的分裂点作为该属性的分裂点。
三、CART
CART 与 ID3,C4.5 不同之处在于 CART 生成的树必须是二叉树。也就是说,无论是回归还是分类问题,无论特征是离散的还是连续的,无论属性取值有多个还是两个,内部节点只能根据属性值进行二分。
CART 的全称是分类与回归树。从这个名字中就应该知道,CART 既可以用于分类问题,也可以用于回归问题。
回归树中,使用平方误差最小化(MSE)准则来选择特征并进行划分。每一个叶子节点给出的预测值,是划分到该叶子节点的所有样本目标值的均值,这样只是在给定划分的情况下最小化了平方误差。
要确定最优化分,还需要遍历所有属性,以及其所有的取值来分别尝试划分并计算在此种划分情况下的最小平方误差,选取最小的作为此次划分的依据。由于回归树生成使用平方误差最小化准则,所以又叫做最小二乘回归树。
分类树中,使用 Gini 指数最小化准则来选择特征并进行划分;
Gini 指数表示集合的不确定性,或者是不纯度。基尼指数越大,集合不确定性越高,不纯度也越大。这一点和熵类似。另一种理解基尼指数的思路是,基尼指数是为了最小化误分类的概率。
信息增益 vs 信息增益比
之所以引入了信息增益比,是由于信息增益的一个缺点。那就是:信息增益总是偏向于选择取值较多的属性。信息增益比在此基础上增加了一个罚项,解决了这个问题。
Gini 指数 vs 熵
既然这两个都可以表示数据的不确定性,不纯度。那么这两个有什么区别那?
Gini 指数的计算不需要对数运算,更加高效;
Gini 指数更偏向于连续属性,熵更偏向于离散属性。
https://blog.csdn.net/jiaoyangwm/article/details/79525237
https://blog.csdn.net/NIeson2012/article/details/51279332
随机森林由LeoBreiman(2001)提出,它通过自助法(bootstrap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练样本集合,然后根据自助样本集生成k个分类树组成随机森林,新数据的分类结果按分类树投票多少形成的分数而定。其实质是对决策树算法的一种改进,将多个决策树合并在一起,每棵树的建立依赖于一个独立抽取的样品,森林中的每棵树具有相同的分布,分类误差取决于每一棵树的分类能力和它们之间的相关性。特征选择采用随机的方法去分裂每一个节点,然后比较不同情况下产生的误差。能够检测到内在估计误差、分类能力和相关性决定选择特征的数目。单棵树的分类能力可能很小,但在随机产生大量的决策树后,一个测试样品可以通过每一棵树的分类结果经统计后选择最可能的分类。
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。
随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显著提高的前提下提高了预测精度。随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用
随机森林的优点:
a. 在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合
b. 在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力
c. 它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化
d. 可生成一个Proximities=(pij)矩阵,用于度量样本之间的相似性: pij=aij/N, aij表示样本i和j出现在随机森林中同一个叶子结点的次数,N随机森林中树的颗数
e. 在创建随机森林的时候,对generlization error使用的是无偏估计
f. 训练速度快,可以得到变量重要性排序(两种:基于OOB误分率的增加量和基于分裂时的GINI下降量
g. 在训练过程中,能够检测到feature间的互相影响
h. 容易做成并行化方法
随机森林应用范围:
随机森林主要应用于回归和分类。 组合分类器比单一分类器的分类效果好,随机森林(randomforest)是一种利用多个分类树对数据进行判别与分类的方法,它在对数据进行分类的同时,还可以给出各个变量(基因)的重要性评分,评估各个变量在分类中所起的作用。
https://www.zhihu.com/question/41354392/answer/98658997