回归分析定义衡量标准

 

如果不能对模型的训练和测试的表现进行量化地评估,我们就很难衡量模型的好坏。通常我们会定义一些衡量标准,这些标准可以通过对某些误差或者拟合程度的计算来得到。通过运算 决定系数R2 来量化模型的表现。模型的决定系数是回归分析中十分常用的统计信息,经常被当作衡量模型预测能力好坏的标准。
R2的数值范围从0至1,表示目标变量的预测值和实际值之间的相关程度平方的百分比。一个模型的R2 值为0说明它完全无法预测目标变量;而一个R2 值为1的模型则可以对目标变量进行完美的预测。从0至1之间的数值,则表示该模型中目标变量中有百分之多少能够用特征来解释。_模型也可能出现负值的R2,这种情况下模型所做预测还不如直接计算目标变量的平均值。
 
使用例子:
Examples
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)  
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')  
0.938...
 

你可能感兴趣的:(机器学习)