SIFT算法的特征提取与匹配

借鉴作者http://licong1018.blog.163.com/blog/static/902697842012111594813944/的程序,我用自己的图片尝试一下果然好用,img1/img2是同一个物体的不同形状图片,算法的步骤很简洁,注释部分是我依据自己的理解添加进去的,可能理解的有些偏差,望指教。

#include "highgui.h"

#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
Mat input1 = imread("img1.png", 1);
Mat input2 = imread("img2.png", 1);
SiftFeatureDetector detector;//SIFT的特征探测器;
vector keypoint1, keypoint2;
detector.detect(input1, keypoint1);//keypoint存储了检测到特征点的基本信息;

Mat output1;//提取图片特征并显示出来;
drawKeypoints(input1, keypoint1, output1);
imshow("sift_result1.png", output1);
imwrite("sift_result1.png", output1);

Mat output2;
SiftDescriptorExtractor extractor;//存储SIFT提取的特征向量
Mat descriptor1, descriptor2;
BruteForceMatcher> matcher;
vector matches;

Mat img_matches;//提取图片特征函数并显示
detector.detect(input2, keypoint2);
drawKeypoints(input2, keypoint2, output2);
imshow("sift_result2.jpg", output2);
imwrite("sift_result2.jpg", output2);
//计算两幅图像的特征向量
extractor.compute(input1, keypoint1, descriptor1);
extractor.compute(input2, keypoint2, descriptor2);
//两组特征向量匹配;
matcher.match(descriptor1, descriptor2, matches);
//匹配结果的图像存储到img_matches;
drawMatches(input1, keypoint1, input2, keypoint2, matches, img_matches);
imshow("matches", img_matches);
imwrite("matches.jpg", img_matches);

cvWaitKey(100);
return 0;
}

你可能感兴趣的:(学习openCV)