原文使用有道云笔记创作, 看这个: http://note.youdao.com/noteshare?id=82f88b1c82652b80c27d54aad55af035
```
引言
> Android 的log,从操作系统分层上来讲,可以分为“Kernel Log”和“User Log”(这是我个人引入的术语)。
> 所谓“Kernel Log”就是操作系统内核打印的log。内核里调用printk等接口请求输出kernel log。
kernel log最后会被打印到/dev/kmsg文件上。可以通过dmesg查看到
> 所谓“User Log”分为2部分。
一类是Linux的标准输出设备中打印的log(stderr/stdout).
另一类是android特有的log流程。如通过android.util.Log类打印的log,eventslog, ALOG() native层log打印.
他们都可以通过logcat看到.
本文基于Android N源码, 对Android的log机制做介绍.
```
先给出一张Android Log系统的总图
![image](https://note.youdao.com/yws/public/resource/61a8527040499b2a0ff58d2fe3aa7bf9/xmlnote/WEBRESOURCE201e2aad89277aeb65c08a26c9b32701/19289)
# 1 Android特有Log流程
```
// java
import android.util.Log;
Log.d("cwj", "test log");
```
==android.util.Log== 是在做Android开发中最常用的log输出手段.这里输出的log, 我们通过"adb logcat"或"adb shell logcat"命令获取.
**那么从"Log.d("cwj", "test log");" 到"logcat"之间到底发生了什么呢?**
```
// C/C++
#define LOG_TAG "fingerprintd"
ALOG(LOG_VERBOSE, LOG_TAG, "lockout\n");
ALOGE("Invalid callback object");
ALOGD("onAcquired(%d), duplicatedFingerId(%d)", 1, 2);
```
**对于Native Code中的 ALOG 等的log打印 到logcat之间, 又发生了什么呢?**
## 1.1 android.util.Log 和 android.util.writeEvent
### 1.1.1 android.util.Log
java类Log的源码在 "frameworks/base/core/java/android/util/Log.java"
Lod中的 Log.d() / Log.v() 等打印不级别的函数, 最终都走到 ==println_native()== native函数.
```
public static int v(String tag, String msg) {
return println_native(LOG_ID_MAIN, VERBOSE, tag, msg);
}
public static int d(String tag, String msg) {
return println_native(LOG_ID_MAIN, DEBUG, tag, msg);
}
/** @hide */ public static native int println_native(int bufID,
int priority, String tag, String msg);
```
println_native 的实现在 "/frameworks/base/core/jni/android_util_Log.cpp"
```
/*
* JNI registration.
*/
static const JNINativeMethod gMethods[] = {
/* name, signature, funcPtr */
...
{ "println_native", "(IILjava/lang/String;Ljava/lang/String;)I", (void*) android_util_Log_println_native },
...
};
/*
* In class android.util.Log:
* public static native int println_native(int buffer, int priority, String tag, String msg)
*/
static jint android_util_Log_println_native(JNIEnv* env, jobject clazz,
jint bufID, jint priority, jstring tagObj, jstring msgObj)
{
const char* tag = NULL;
const char* msg = NULL;
if (msgObj == NULL) {
jniThrowNullPointerException(env, "println needs a message");
return -1;
}
if (bufID < 0 || bufID >= LOG_ID_MAX) {
jniThrowNullPointerException(env, "bad bufID");
return -1;
}
if (tagObj != NULL)
tag = env->GetStringUTFChars(tagObj, NULL);
msg = env->GetStringUTFChars(msgObj, NULL);
int res = __android_log_buf_write(bufID, (android_LogPriority)priority, tag, msg);
if (tag != NULL)
env->ReleaseStringUTFChars(tagObj, tag);
env->ReleaseStringUTFChars(msgObj, msg);
return res;
}
```
println_native() 对应的jni方法是 ==android_util_Log_println_native()==.
android_util_Log_println_native()很简单,就是简单的Log级别检查后, 就调用 ==__android_log_buf_write()== 做进一步处理.
__android_log_buf_write() 的声明在 "/system/core/include/log/log.h":
```
int __android_log_buf_write(int bufID, int prio, const char *tag, const char *text);
```
__android_log_buf_write() 的定义(实现)在 "/system/core/liblog".
发现liblog中有多个 __android_log_buf_write() 的实现:
```
logd_write.c
int __android_log_buf_write(int bufID, int prio, const char *tag, const char *msg)
...
logd_write_kern.c
int __android_log_buf_write(int bufID, int prio, const char *tag, const char *msg)
...
logger_write.c
LIBLOG_ABI_PUBLIC int __android_log_buf_write(int bufID, int prio,
...
```
那么我们用到的到底是哪个呢? 具体分析在[1.3 /system/core/liblog]介绍.
### 1.1.2 android.util.writeEvent
分析 writeEvent 到 liblog 的流程高度相似, 细节就不展开了, 这里直接贴下最终的结论:
```
/frameworks/base/core/java/android/util/EventLog.java writeEvent()
--> /frameworks/base/core/jni/android_util_EventLog.cp android_btWriteLog_xx()
--> /system/core/include/log/logger.h --> log.h android_btWriteLog()
--> /system/core/liblog/logger_write.c __android_log_btwrite() -> write_to_log()
```
==__android_log_btwrite()== 后面调用到 ==write_to_log()==. 前面提到的 __android_log_buf_write() 也是直接调用到 write_to_log() .
即结论是: android.util.EvnentLog 跟 Android.util.Log 打印日志的流程相同, 都是转到 /system/core/liblog/logger_write.c 去处理.
android.util.writeEvent.writeEvent() --> android_btWriteLog_xx() (/frameworks/base/core/jni/android_util_EventLog.cpp)
--> android_btWriteLog() (/system/core/include/log/log.h) --> __android_log_btwrite() (/system/core/liblog/logger_write.c) --> write_to_log()
## 1.2 Native Code : ALOG / ALOGE / ALOGD ..
我们还会看到一些native code(主要是C/C++)也有打印log:
```
// xxx.c / xxx.cpp
#define LOG_TAG "fingerprintd"
ALOG(LOG_VERBOSE, LOG_TAG, "lockout\n");
ALOGE("Invalid callback object");
ALOGD("onAcquired(%d), duplicatedFingerId(%d)", 1, 2);
```
这些形如 "[ASR]LOG[VDIWE]" 的函数的声明在 "/system/core/include/log/log.h":
```
// ALOGD/ALOGE ---> ALOG ---> LOG_PRI ---> android_printLog ---> __android_log_print()
/*
* Basic log message macro.
*
* Example:
* ALOG(LOG_WARN, NULL, "Failed with error %d", errno);
*
* The second argument may be NULL or "" to indicate the "global" tag.
*/
#ifndef ALOG
#define ALOG(priority, tag, ...) \
LOG_PRI(ANDROID_##priority, tag, __VA_ARGS__)
#endif
/*
* Simplified macro to send an error log message using the current LOG_TAG.
*/
#ifndef ALOGE
#define ALOGE(...) ((void)ALOG(LOG_ERROR, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send a debug log message using the current LOG_TAG.
*/
#ifndef ALOGD
#define ALOGD(...) ((void)ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#endif
/////////////////////////////////////////////
/*
* Log macro that allows you to specify a number for the priority.
*/
#ifndef LOG_PRI
#define LOG_PRI(priority, tag, ...) \
android_printLog(priority, tag, __VA_ARGS__)
#endif
#define android_printLog(prio, tag, fmt...) \
__android_log_print(prio, tag, fmt)
```
在宏里兜兜转转,最后走到 __android_log_print() 函数:
ALOGD/ALOGE ---> ALOG ---> LOG_PRI ---> android_printLog ---> __android_log_print()
而 ==__android_log_print()== 函数的实现在 "/system/core/liblog":
```
// 只列出其中一个实现.
// /system/core/liblog/logger_write.c
LIBLOG_ABI_PUBLIC int __android_log_write(int prio, const char *tag,
const char *msg)
{
return __android_log_buf_write(LOG_ID_MAIN, prio, tag, msg);
}
```
__android_log_print() 函数只是 __android_log_buf_write() 的简单包装.
所以, 形如 "[ASR]LOG[VDIWE]" 的的log输出, 最终跟 android.util.Log 一样, 也是走到 "/system/core/liblog"的 __android_log_buf_write() 处理.
## 1.3 /system/core/liblog
上面2节都提到, 关键函数 __android_log_buf_write() . 以及遗留了一个问题 "__android_log_buf_write() 的多个实现, 到底哪个才是最终的实现?
结论是 "有 "LIBLOG_ABI_PUBLIC" 宏修饰的, 是最终被使用的实现."
```
// /system/core/liblog/logger_write.c
LIBLOG_ABI_PUBLIC int __android_log_buf_write(int bufID, int prio,
const char *tag, const char *msg)
{
// ....
return write_to_log(bufID, vec, 3);
}
```
那么怎么得道的这个结论呢?
__android_log_buf_write() 分别在 "logd_write.c" / "logd_write_kern.c" / "logger_write.c" 三个文件都有实现.
```
logd_write.c
int __android_log_buf_write(int bufID, int prio, const char *tag, const char *msg)
...
logd_write_kern.c
int __android_log_buf_write(int bufID, int prio, const char *tag, const char *msg)
...
logger_write.c
LIBLOG_ABI_PUBLIC int __android_log_buf_write(int bufID, int prio,
...
```
根据liblog模块的mk文件 "/system/core/liblog/Android.mk", 知道前2个都没有参与编译. 只有第三个文件 "logger_write.c" 参与了编译.
另外结合阅读 liblog 模块的代码, 也可以确认, logd_write.c 和 logd_write_kern.c 都是历史残留代码.
在 [1.6 Android 4.4 liblog] 对旧的log逻辑做一些分析.
回到 logger_write.c 的 __android_log_buf_write() 继续跟进.
```
// /system/core/liblog/logger_write.c
LIBLOG_ABI_PUBLIC int __android_log_buf_write(int bufID, int prio,
const char *tag, const char *msg)
{
struct iovec vec[3];
char tmp_tag[32];
if (!tag)
tag = "";
/* XXX: This needs to go! */
if ((bufID != LOG_ID_RADIO) &&
(!strcmp(tag, "HTC_RIL") ||
!strncmp(tag, "RIL", 3) || /* Any log tag with "RIL" as the prefix */
!strncmp(tag, "IMS", 3) || /* Any log tag with "IMS" as the prefix */
!strcmp(tag, "AT") ||
!strcmp(tag, "GSM") ||
!strcmp(tag, "STK") ||
!strcmp(tag, "CDMA") ||
!strcmp(tag, "PHONE") ||
!strcmp(tag, "SMS"))) {
bufID = LOG_ID_RADIO;
/* Inform third party apps/ril/radio.. to use Rlog or RLOG */
snprintf(tmp_tag, sizeof(tmp_tag), "use-Rlog/RLOG-%s", tag);
tag = tmp_tag;
}
#if __BIONIC__
if (prio == ANDROID_LOG_FATAL) {
android_set_abort_message(msg);
}
#endif
vec[0].iov_base = (unsigned char *)&prio;
vec[0].iov_len = 1;
vec[1].iov_base = (void *)tag;
vec[1].iov_len = strlen(tag) + 1;
vec[2].iov_base = (void *)msg;
vec[2].iov_len = strlen(msg) + 1;
return write_to_log(bufID, vec, 3); // [1.1.2 android.util.writeEvent] 提到, eventlog会走到这个函数.
}
```
__android_log_buf_write() 调用一次就是一条log.
它先处理了log标签"tag"如果为NULL, 则将其置为空字符"", 然后处理了radio log的特殊情况.
都ok以后,将出bufID以外的所有参数都封装到一个 iovec struct的数组中. 熟悉Linux C/C编程的小伙伴应该对 iovec 不陌生.
```
#include
struct iovec {
ptr_t iov_base; // Starting address / iov_base指向一个缓冲区
size_t iov_len; // Length in bytes / 确定了接收的最大长度 or 实际写入的长度
};
```
指针 iov_base 指向一个缓冲区,这个缓冲区是存放的是 writev() 将要发送的数据, 或 readv() 所接收的数据.
成员 iov_len 在各种情况下分别确定了 实际写入的长度 or 接收的最大长度.
所以我们知道 write_to_log() 内部肯定要调用到 writev() 了.
以为后面很容易就可以看到调用 writev() ? 其实还是有一段曲折的.
```
// /media/moasm/Samsung_SSD_1T/M1871_NF7_base/system/core/liblog/logger_write.c
static int __write_to_log_init(log_id_t, struct iovec *vec, size_t nr);
static int (*write_to_log)(log_id_t, struct iovec *vec, size_t nr) = __write_to_log_init;
static int __write_to_log_init(log_id_t log_id, struct iovec *vec, size_t nr)
{
__android_log_lock();
if (write_to_log == __write_to_log_init) { // 第一次调用到 write_to_log() , if条件肯定成立
int ret;
ret = __write_to_log_initialize(); // 初始化,里面是重点代码
if (ret < 0) {
__android_log_unlock();
if (!list_empty(&__android_log_persist_write)) {
__write_to_log_daemon(log_id, vec, nr);
}
return ret;
}
write_to_log = __write_to_log_daemon; // write_to_log 函数指针,重新指向到 __write_to_log_daemon 函数
}
__android_log_unlock();
return write_to_log(log_id, vec, nr);
}
```
函数指针 write_to_log 先初始化指向 __write_to_log_init()函数.
当第一次调用 write_to_log 就等于调用 __write_to_log_init().
然后后续的调用 write_to_log :
要么指向 __write_to_log_daemon() 函数, 以后调用 write_to_log 就直接调到 __write_to_log_daemon();
要么继续指向 __write_to_log_init() 函数, 但是依然会走到 __write_to_log_daemon() 函数.
总之, 要到 __write_to_log_daemon() 函数继续跟进.
```
static int __write_to_log_daemon(log_id_t log_id, struct iovec *vec, size_t nr)
{
struct android_log_transport_write *node;
int ret;
struct timespec ts;
size_t len, i;
for (len = i = 0; i < nr; ++i) { // 检查 vec 参数是否合法
len += vec[i].iov_len;
}
if (!len) {
return -EINVAL;
}
#if defined(__BIONIC__)
if (log_id == LOG_ID_SECURITY) {
// ...
// check_log_uid_permissions() ...
// __android_log_security() ...
// ...
} else if (log_id == LOG_ID_EVENTS) {
// ...
// tag = android_lookupEventTag(m, get4LE(vec[0].iov_base));
// ret = __android_log_is_loggable(ANDROID_LOG_INFO,
// tag,
// ANDROID_LOG_VERBOSE);
// if (!ret) {
// return -EPERM;
// }
// ...
} else {
// ...
if (!__android_log_is_loggable(prio, tag, ANDROID_LOG_VERBOSE)) {
return -EPERM;
}
}
clock_gettime(android_log_clockid(), &ts);
#else
/* 下面小段代码同 clock_gettime(CLOCK_REALTIME, &ts); */
{
struct timeval tv;
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
}
#endif
ret = 0;
i = 1 << log_id;
write_transport_for_each(node, &__android_log_transport_write) {
if (node->logMask & i) {
ssize_t retval;
retval = (*node->write)(log_id, &ts, vec, nr);
if (ret >= 0) {
ret = retval;
}
}
}
write_transport_for_each(node, &__android_log_persist_write) {
if (node->logMask & i) {
(void)(*node->write)(log_id, &ts, vec, nr);
}
}
return ret;
}
```
总的来说, 这个函数就是从 __android_log_transport_write 和 __android_log_persist_write 这两个结构中取出节点(node) 执行 write 操作:
```
(*node->write)(log_id, &ts, vec, nr);
```
其定义在 "/system/core/liblog/config_write.c":
```
// /system/core/liblog/config_write.c
LIBLOG_HIDDEN struct listnode __android_log_transport_write =
{ &__android_log_transport_write, &__android_log_transport_write };
LIBLOG_HIDDEN struct listnode __android_log_persist_write =
{ &__android_log_persist_write, &__android_log_persist_write};
static void __android_log_add_transport(
struct listnode *list, struct android_log_transport_write *transport) {
// ...
}
LIBLOG_HIDDEN void __android_log_config_write() {
#if (FAKE_LOG_DEVICE == 0)
extern struct android_log_transport_write logdLoggerWrite;
extern struct android_log_transport_write pmsgLoggerWrite;
__android_log_add_transport(&__android_log_transport_write, &logdLoggerWrite);
__android_log_add_transport(&__android_log_persist_write, &pmsgLoggerWrite);
#else
extern struct android_log_transport_write fakeLoggerWrite;
__android_log_add_transport(&__android_log_transport_write, &fakeLoggerWrite);
#endif
}
```
实际上是对 "struct android_log_transport_write logdLoggerWrite" 和 "struct android_log_transport_write pmsgLoggerWrite" 的包装. 他们分别在 "/system/core/liblog/logd_writer.c" 和 "/system/core/liblog/pmsg_writer.c" 中实现:
```
// /system/core/liblog/logd_writer.c
static int logdAvailable(log_id_t LogId);
static int logdOpen();
static void logdClose();
static int logdWrite(log_id_t logId, struct timespec *ts,
struct iovec *vec, size_t nr);
LIBLOG_HIDDEN struct android_log_transport_write logdLoggerWrite = {
.node = { &logdLoggerWrite.node, &logdLoggerWrite.node },
.context.sock = -1,
.name = "logd",
.available = logdAvailable,
.open = logdOpen,
.close = logdClose,
.write = logdWrite,
// chenwenjun add for uplevel log >> kernel log
.fd = -1,
//
};
// .write = logdWrite, --> 实际的 write 操作是由 logdWrite() 函数执行
```
```
// /system/core/liblog/pmsg_writer.c
static int pmsgOpen();
static void pmsgClose();
static int pmsgAvailable(log_id_t logId);
static int pmsgWrite(log_id_t logId, struct timespec *ts,
struct iovec *vec, size_t nr);
LIBLOG_HIDDEN struct android_log_transport_write pmsgLoggerWrite = {
.node = { &pmsgLoggerWrite.node, &pmsgLoggerWrite.node },
.context.fd = -1,
.name = "pmsg",
.available = pmsgAvailable,
.open = pmsgOpen,
.close = pmsgClose,
.write = pmsgWrite,
};
// .write = pmsgWrite, --> 实际的 write 操作是由 pmsgWrite() 函数执行
```
总的来说, "/system/core/liblog/logd_writer.c"的实现, 就是把log写到名为 "/dev/socket/logdw" 的socket :
```
// /system/core/liblog/logd_writer.c
// logdOpen() 连接"/dev/socket/logdw" socket,记录socket句柄到 logdLoggerWrite.context.sock
static int logdOpen()
{
int i, ret = 0;
if (logdLoggerWrite.context.sock < 0) {
i = TEMP_FAILURE_RETRY(socket(PF_UNIX, SOCK_DGRAM | SOCK_CLOEXEC, 0));
if (i < 0) {
ret = -errno;
} else if (TEMP_FAILURE_RETRY(fcntl(i, F_SETFL, O_NONBLOCK)) < 0) {
ret = -errno;
close(i);
} else {
struct sockaddr_un un;
memset(&un, 0, sizeof(struct sockaddr_un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, "/dev/socket/logdw");
if (TEMP_FAILURE_RETRY(connect(i, (struct sockaddr *)&un,
sizeof(struct sockaddr_un))) < 0) {
ret = -errno;
close(i);
} else {
logdLoggerWrite.context.sock = i;
}
}
}
return ret;
}
// 关闭socket
static void logdClose()
{
if (logdLoggerWrite.context.sock >= 0) {
close(logdLoggerWrite.context.sock);
logdLoggerWrite.context.sock = -1;
}
}
// logdWrite() 把log非阻塞地写出到socket .
static int logdWrite(log_id_t logId, struct timespec *ts,
struct iovec *vec, size_t nr)
{
ssize_t ret;
static const unsigned headerLength = 1;
struct iovec newVec[nr + headerLength];
android_log_header_t header;
size_t i, payloadSize;
static atomic_int_fast32_t dropped;
static atomic_int_fast32_t droppedSecurity;
if (logdLoggerWrite.context.sock < 0) {
return -EBADF;
}
/* logd, after initialization and priv drop */
if (__android_log_uid() == AID_LOGD) {
/*
* ignore log messages we send to ourself (logd).
* Such log messages are often generated by libraries we depend on
* which use standard Android logging.
*/
return 0;
}
/*
* struct {
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
header.tid = gettid();
header.realtime.tv_sec = ts->tv_sec;
header.realtime.tv_nsec = ts->tv_nsec;
newVec[0].iov_base = (unsigned char *)&header;
newVec[0].iov_len = sizeof(header);
if (logdLoggerWrite.context.sock > 0) {
int32_t snapshot = atomic_exchange_explicit(&droppedSecurity, 0,
memory_order_relaxed);
if (snapshot) {
android_log_event_int_t buffer;
header.id = LOG_ID_SECURITY;
buffer.header.tag = htole32(LIBLOG_LOG_TAG);
buffer.payload.type = EVENT_TYPE_INT;
buffer.payload.data = htole32(snapshot);
newVec[headerLength].iov_base = &buffer;
newVec[headerLength].iov_len = sizeof(buffer);
ret = TEMP_FAILURE_RETRY(writev(logdLoggerWrite.context.sock, newVec, 2));
if (ret != (ssize_t)(sizeof(header) + sizeof(buffer))) {
atomic_fetch_add_explicit(&droppedSecurity, snapshot,
memory_order_relaxed);
}
}
snapshot = atomic_exchange_explicit(&dropped, 0, memory_order_relaxed);
if (snapshot && __android_log_is_loggable(ANDROID_LOG_INFO,
"liblog",
ANDROID_LOG_VERBOSE)) {
android_log_event_int_t buffer;
header.id = LOG_ID_EVENTS;
buffer.header.tag = htole32(LIBLOG_LOG_TAG);
buffer.payload.type = EVENT_TYPE_INT;
buffer.payload.data = htole32(snapshot);
newVec[headerLength].iov_base = &buffer;
newVec[headerLength].iov_len = sizeof(buffer);
ret = TEMP_FAILURE_RETRY(writev(logdLoggerWrite.context.sock, newVec, 2));
if (ret != (ssize_t)(sizeof(header) + sizeof(buffer))) {
atomic_fetch_add_explicit(&dropped, snapshot,
memory_order_relaxed);
}
}
}
header.id = logId;
for (payloadSize = 0, i = headerLength; i < nr + headerLength; i++) {
newVec[i].iov_base = vec[i - headerLength].iov_base;
payloadSize += newVec[i].iov_len = vec[i - headerLength].iov_len;
if (payloadSize > LOGGER_ENTRY_MAX_PAYLOAD) {
newVec[i].iov_len -= payloadSize - LOGGER_ENTRY_MAX_PAYLOAD;
if (newVec[i].iov_len) {
++i;
}
break;
}
}
/*
* The write below could be lost, but will never block.
*
* ENOTCONN occurs if logd dies.
* EAGAIN occurs if logd is overloaded.
*/
ret = TEMP_FAILURE_RETRY(writev(logdLoggerWrite.context.sock, newVec, i));
if (ret < 0) {
ret = -errno;
if (ret == -ENOTCONN) {
__android_log_lock();
logdClose();
ret = logdOpen();
__android_log_unlock();
if (ret < 0) {
return ret;
}
ret = TEMP_FAILURE_RETRY(writev(logdLoggerWrite.context.sock, newVec, i));
if (ret < 0) {
ret = -errno;
}
}
}
if (ret > (ssize_t)sizeof(header)) {
ret -= sizeof(header);
} else if (ret == -EAGAIN) {
atomic_fetch_add_explicit(&dropped, 1, memory_order_relaxed);
if (logId == LOG_ID_SECURITY) {
atomic_fetch_add_explicit(&droppedSecurity, 1,
memory_order_relaxed);
}
}
return ret;
}
```
> socket "/dev/socket/logdw" 是由 logd (/system/core/logd) 创建的socket. 将在 [1.3 logd ] 中介绍.
而 "/system/core/liblog/pmsg_writer.c" 的实现, 总的来说是把日志写到 "/dev/pmsg0" 文件去:
```
// /system/core/liblog/pmsg_writer.c
static int pmsgOpen()
{
if (pmsgLoggerWrite.context.fd < 0) {
pmsgLoggerWrite.context.fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
}
return pmsgLoggerWrite.context.fd;
}
static int pmsgWrite(log_id_t logId, struct timespec *ts,
struct iovec *vec, size_t nr)
{
static const unsigned headerLength = 2;
struct iovec newVec[nr + headerLength];
android_log_header_t header;
android_pmsg_log_header_t pmsgHeader;
size_t i, payloadSize;
ssize_t ret;
if ((logId == LOG_ID_EVENTS) && !__android_log_is_debuggable()) {
if (vec[0].iov_len < 4) {
return -EINVAL;
}
if (SNET_EVENT_LOG_TAG != get4LE(vec[0].iov_base)) {
return -EPERM;
}
}
if (pmsgLoggerWrite.context.fd < 0) {
return -EBADF;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsgHeader;
* // what we provide to file
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
pmsgHeader.magic = LOGGER_MAGIC;
pmsgHeader.len = sizeof(pmsgHeader) + sizeof(header);
pmsgHeader.uid = __android_log_uid();
pmsgHeader.pid = getpid();
header.id = logId;
header.tid = gettid();
header.realtime.tv_sec = ts->tv_sec;
header.realtime.tv_nsec = ts->tv_nsec;
newVec[0].iov_base = (unsigned char *)&pmsgHeader;
newVec[0].iov_len = sizeof(pmsgHeader);
newVec[1].iov_base = (unsigned char *)&header;
newVec[1].iov_len = sizeof(header);
for (payloadSize = 0, i = headerLength; i < nr + headerLength; i++) {
newVec[i].iov_base = vec[i - headerLength].iov_base;
payloadSize += newVec[i].iov_len = vec[i - headerLength].iov_len;
if (payloadSize > LOGGER_ENTRY_MAX_PAYLOAD) {
newVec[i].iov_len -= payloadSize - LOGGER_ENTRY_MAX_PAYLOAD;
if (newVec[i].iov_len) {
++i;
}
payloadSize = LOGGER_ENTRY_MAX_PAYLOAD;
break;
}
}
pmsgHeader.len += payloadSize;
ret = TEMP_FAILURE_RETRY(writev(pmsgLoggerWrite.context.fd, newVec, i));
if (ret < 0) {
ret = errno ? -errno : -ENOTCONN;
}
if (ret > (ssize_t)(sizeof(header) + sizeof(pmsgHeader))) {
ret -= sizeof(header) - sizeof(pmsgHeader);
}
return ret;
}
```
> ps: 目前我们手头的机型, "/dev/pmsg0" 是未被创建出来的. 所以这段代码是无效的.
我们在创建 "/dev/pmsg0" 并配置合适的权限 和selinux规则后, 是可以同步的bug日志也导到这个设备来的.
(因为liblog.so是运行在每个打印日志的进程中的, "/dev/pmsg0"要创建成能被所有进程读写)
```
本节有点长(主要是贴了2个较长的函数), 这里小结下:
"/system/core/liblog" 模块编译生成 "/system/lib(64)/liblog.so".
liblog.so 被所有需要打印日志的进程加载使用, 负责处理打印日志流程.
目前(Android N)上, 它会做尝试将日志输出到2个地方:
1> 通过socket "/dev/socket/logdw" 将日志输送到 logd (/system/bin/logd)进程.
2> 将log直接写入 "/dev/pmsg0" 文件 (如果存在,且可访问的话).
"/system/core/liblog"的内部有一些无用的旧版代码. 关于进程写出日志,有用的主要源码文件是:
/system/core/include/log/log.h // liblog 模块给别的模块使用的头文件
/system/core/liblog/logger_write.c // 入口
/system/core/liblog/config_write.h // config_write 可以理解为配置管理
/system/core/liblog/config_write.c
// logd_writer.c 和 pmsg_writer.c 是日志如何写出的实际实现者
/system/core/liblog/logd_writer.c // !!! 注意有个 "logd_write.c" 文件容易搞混淆 !!!
/system/core/liblog/pmsg_writer.c
ps: 一个用户进程要读取日志, 也要用到liblog.so库. 这里就不展开了.
```
## 1.3 logd
上几节提到, 无论用户是从Log.java类,还是在 native层调用形如 ALOG 这样的函数(宏函数)打印log, 最后都是走到 liblog 的 __android_log_buf_write() 函数, 即"/system/lib(64)/liblog.so".
liblog 总的来说就2件事, 其中一件事就是写日志到socket "/dev/socket/logdw".
而这个socket "/dev/socket/logdw"就是logd负责创建的:
```
// /system/core/logd/logd.rc
service logd /system/bin/logd
socket logd stream 0666 logd logd
socket logdr seqpacket 0666 logd logd
socket logdw dgram 0222 logd logd
group root system readproc
writepid /dev/cpuset/system-background/tasks
```
另外, 我们也可以看到 "socket logdr" 的创建. logcat 连接 socket logdr 获取日志.
```
tips 1 : "socket logdr" 最后创建出来的文件是 "/dev/socket/logdr"
tips 2 : "socket logd" 最后创建出来的文件是 "/dev/socket/logd"
tips 3 : 我们说的"文件"是linux世界里的文件. linux的设计是"一切皆是文件"
```
通过ls命令查看 logd / logdr / logdw三个文件
```
$ adb shell ls -alZ /dev/socket | grep logd
srw-rw-rw- 1 logd logd u:object_r:logd_socket:s0 0 2018-05-29 15:49 logd
srw-rw-rw- 1 logd logd u:object_r:logdr_socket:s0 0 2018-05-29 15:49 logdr
s-w--w--w- 1 logd logd u:object_r:logdw_socket:s0 0 2018-05-29 15:49 logdw
```
注意到他们的权限字段都是 "srw-rw-rw-", 最前面的 "s" 即表示该文件是 socket.
logd 模块源码在 /system/core/logd/, 编译的目标是linux可执行文件 "/system/bin/logd".
为常住进程:
```
$ adb shell ps | grep logd
logd 470 1 18088 2096 sigsuspend 0000000000 S /system/bin/logd
```
logd中有循环缓冲区 来存储接收来的log.
属性字段 "persist.logd.size" 控制log缓冲区的大小:
```
// 查看logd log缓冲区大小:
$ adb shell getprop persist.logd.size
256KB
// 修改logd log缓冲区大小:
$ adb shell setprop persist.logd.size 512KB
```
logd中有30个左右C/C++源文件. 大部分是C++文件,可见整个模块是面向对象编程的.
这里大概画出一下UML图(伪).
1> 接收写到logdw socket的日志:
2> 响应通过logdr socket获取日志:
3> logd抓取 Kernel Log (简介见 [1.5 logd 捕获 kernel log] ):
## 1.4 logcat
上一节提到, logcat是通过连接 socket "/dev/socket/logdr" 来获取日志的.
logcat 就是负责从 logd 获取日志, 然后展示给使用者,或转存到文件.
logcat也可以清除 logd 中的日志缓存, 命令是"adb shell logcat -c" 或 "adb logcat -c".
logcat 可以按照进程, 模块, 标签 过滤查看log. 也可以定制log查看的格式.
具体用法 使用 "$ adb shell logcat -h" 查看.
默认情况下, 一条log的格式形如下:
```
05-29 15:30:58.325 2943 2943 I Strategy: xxxxxxxxxx
日期 时间 pid tid log级别 log标签 log正文
```
logcat模块源码在 "/system/core/logcat", 编译目标为 "/system/bin/logcat" .
以下简要介绍下, logcat 从 logd 获取日志的流程
```
// /system/core/logcat/logcat.cpp
struct log_device_t {
const char* device;
bool binary;
struct logger *logger;
struct logger_list *logger_list;
bool printed;
log_device_t* next;
log_device_t(const char* d, bool b) {
device = d;
binary = b;
next = NULL;
printed = false;
logger = NULL;
logger_list = NULL;
}
};
namespace android {
// ...
static int g_devCount; // >1 means multiple
// ...
int main(int argc, char **argv)
{
log_device_t* devices = NULL;
log_device_t* dev;
bool printDividers = false;
struct logger_list *logger_list;
// ... 参数解析 ...
// 获取 "main" / "system" / "crash" 三个log缓冲区
if (!devices) {
dev = devices = new log_device_t("main", false);
g_devCount = 1;
if (android_name_to_log_id("system") == LOG_ID_SYSTEM) { // android_name_to_log_id() 见 system/core/liblog/logger_name.c
dev = dev->next = new log_device_t("system", false);
g_devCount++;
}
if (android_name_to_log_id("crash") == LOG_ID_CRASH) {
dev = dev->next = new log_device_t("crash", false);
g_devCount++;
}
}
setupOutput(); // 设置log输出格式
if (hasSetLogFormat == 0) {
const char* logFormat = getenv("ANDROID_PRINTF_LOG");
if (logFormat != NULL) {
err = setLogFormat(logFormat);
if (err < 0) {
fprintf(stderr, "invalid format in ANDROID_PRINTF_LOG '%s'\n",
logFormat);
}
} else {
setLogFormat("threadtime");
}
}
// ... 设置 log过滤. 调用 android_log_addFilterString() , 源码在 system/core/liblog/logprint.c
// 一系列繁复代码, 打酱油, 初始化
/*********************************************************************************
其核心逻辑就是 走 "/system/core/liblog/logger_read.c", 获取到 struct android_log_transport_read.
目前, 实际上有2个这样的结构:
// /system/core/liblog/config_read.c
extern struct android_log_transport_read logdLoggerRead;
extern struct android_log_transport_read pmsgLoggerRead;
这个结构记录了要去读日志所需的基本参数 和函数. 如果 logdLoggerRead 的 ".read = logdRead,"就表示记录 loadRead()函数为读取日志的方法函数.
// /system/core/liblog/logd_reader.c
LIBLOG_HIDDEN struct android_log_transport_read logdLoggerRead = {
.node = { &logdLoggerRead.node, &logdLoggerRead.node },
.name = "logd",
.available = logdAvailable,
.version = logdVersion,
.read = logdRead,
.poll = logdPoll,
.close = logdClose,
.clear = logdClear,
.getSize = logdGetSize,
.setSize = logdSetSize,
.getReadableSize = logdGetReadableSize,
.getPrune = logdGetPrune,
.setPrune = logdSetPrune,
.getStats = logdGetStats,
};
// /system/core/liblog/pmsg_reader.c
LIBLOG_HIDDEN struct android_log_transport_read pmsgLoggerRead = {
.node = { &pmsgLoggerRead.node, &pmsgLoggerRead.node },
.name = "pmsg",
.available = pmsgAvailable,
.version = pmsgVersion,
.read = pmsgRead,
.poll = NULL,
.close = pmsgClose,
.clear = pmsgClear,
.setSize = NULL,
.getSize = NULL,
.getReadableSize = NULL,
.getPrune = NULL,
.setPrune = NULL,
.getStats = NULL,
};
前者(logdLoggerRead) 是负责读取 logd中的日志(通过读socket "/dev/socket/logdw");
后者(pmsgLoggerRead) 是负责读取 "/dev/pmsg0" 文件中的日志. 直接文件读取. (目前该文件没有被创建, 所有没有日志输出到这里)
即, 想要了解 logcat 如何读取日志的, 关键看 "/system/core/liblog/logd_reader.c" 和 "/system/core/liblog/pmsg_reader.c" 两个源文件.
可读性强, 逻辑清晰.
**********************************************************************************/
}
}
```
如上分析. 我们发现logcat 自身代码目录 "/system/core/logcat" 中基本都是打酱油的代码,
真正的操作 都交给 "/system/core/liblog" 中的方法了.
经过了若干 可读性很差的代码跟进后, 我们发现 :
logcat 如何读取 logd 缓存的日志的, 关键看 "/system/core/liblog/logd_reader.c" 源文件.
可读性强, 逻辑清晰.
"/system/core/liblog/logd_reader.c"显示, logcat 是通过 连接 socket "logr" 来去读 logd中缓存的日志的:
```
// /system/core/liblog/logd_reader.c
// 初始化 socket "logdr"
static int logdOpen(struct android_log_logger_list *logger_list,
struct android_log_transport_context *transp)
{
// ...
int sock = transp->context.sock; // 如果已经初始化过了socket, 则直接返回.
if (sock > 0) {
return sock;
}
// ...
// 创建 socket_local_client 客户端
sock = socket_local_client("logdr",
ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET);
if (sock == 0) {
/* Guarantee not file descriptor zero */
int newsock = socket_local_client("logdr",
ANDROID_SOCKET_NAMESPACE_RESERVED,
SOCK_SEQPACKET);
close(sock);
sock = newsock;
}
if (sock <= 0) {
if ((sock == -1) && errno) {
return -errno;
}
return sock;
}
// 操作 socket_local_client 结构, 连接socket
return transp->context.sock = sock;
}
// 从 socket "logdr" 读取日志:
static int logdRead(struct android_log_logger_list *logger_list,
struct android_log_transport_context *transp,
struct log_msg *log_msg)
{
int ret, e;
// ...
ret = logdOpen(logger_list, transp); // 确保socket 打开
if (ret < 0) {
return ret;
}
memset(log_msg, 0, sizeof(*log_msg)); // 初始化接收缓冲区
// ...
/* NOTE: SOCK_SEQPACKET guarantees we read exactly one full entry */
ret = recv(ret, log_msg, LOGGER_ENTRY_MAX_LEN, 0); // 从socket中接收日志
e = errno;
// ...
if ((ret == -1) && e) {
return -e;
}
return ret;
}
```
其他关于 "logcat -c " 发生了什么的, 不再赘述.可自行阅读 "/system/core/liblog/logd_reader.c"
```
tips :
logcat 调用了很多 liblog 模块的函数. 代码跟起来有点麻烦.
例如有一个有意思的细节: struct android_log_logger_list 和 struct logger_list 的转换.
"struct logger_list"的定义在 "/system/core/include/log/logger.h" :
struct logger_list; // 定义了一个空结构体
android_log_logger_list的定义在 "/system/core/liblog/logger.h" :
struct android_log_logger_list {
struct listnode logger;
struct listnode transport;
int mode;
unsigned int tail;
log_time start;
pid_t pid;
};
发现使用中, struct android_log_logger_list 和 struct logger_list 会相互转换, 如:
// /system/core/liblog/logger_read.c
LIBLOG_ABI_PUBLIC struct logger_list *android_logger_list_alloc_time( // cwj
int mode,
log_time start,
pid_t pid)
{
struct android_log_logger_list *logger_list; // 实际数据结构是 android_log_logger_list
// ...
return (struct logger_list *)logger_list; // 但是给外界使用 是强转为 logger_list
}
LIBLOG_ABI_PUBLIC struct logger *android_logger_open(
struct logger_list *logger_list,
log_id_t logId)
{
struct android_log_logger_list *logger_list_internal =
(struct android_log_logger_list *)logger_list; // struct logger_list 强转 struct android_log_logger_list .
// ...
}
为什么要"画蛇添足"多定义一 个"struct logger_list; " 空结构体呢?
猜测 /system/core/include/log/logger.h" 是对外的. 而 "/system/core/liblog/logger.h" 是对 liblog模块内的.
liblog设计者想对外隐藏内部数据结构细节.
在能够隐藏内部细节的情况下, 开发者尽量选择了隐藏内部细节, 因为外部不需要关心 struct android_log_logger_list 的内部实现,
所以只需要给出 struct logger_list * 去存储 struct android_log_logger_list 的内存地址, 上层后续有什么操作就把这个结构的地址传入liblog模块操作.
即外界根本不需要知道 struct android_log_logger_list 的实现细节.
就像调用 open() API 打开文件, 我们只需拿到文件句柄 FD. 而不需要关系文件系统内部的数据结构. 后续要操作此文件, FD 就是我们的 token(令牌, 资源的身份识别码).
```
## 1.5 logd 捕获 kernel log
通过设置" adb shell setprop logd.kernel true" 可以让logd去抓取 Kernel Log.(一直监听并抓取)
实现原理其实是把 "/proc/kmsg" 和 "/dev/kmsg" 文件当作socket 文件来使用.(详情追踪 LogKlog.h )
实测发现, 需要root权限才能才能设置 "setprop logd.kernel true".
代码如下:
```
// /system/core/logd/main.cpp
int main(int argc, char *argv[]) {
int fdPmesg = -1;
bool klogd = property_get_bool("logd.kernel", // 获取 "logd.kernel" property, 确定是否开启了 kernel log 重定向到 User Log .
BOOL_DEFAULT_TRUE |
BOOL_DEFAULT_FLAG_PERSIST |
BOOL_DEFAULT_FLAG_ENG |
BOOL_DEFAULT_FLAG_SVELTE);
if (klogd) {
fdPmesg = open("/proc/kmsg", O_RDONLY | O_NDELAY); // "/proc/kmsg" 用来读kernel log
}
fdDmesg = open("/dev/kmsg", O_WRONLY); // "/dev/kmsg" 用来写 kernel log
//....
bool auditd = property_get_bool("logd.auditd",
BOOL_DEFAULT_TRUE |
BOOL_DEFAULT_FLAG_PERSIST);
LogAudit *al = NULL;
if (auditd) {
al = new LogAudit(logBuf, reader,
property_get_bool("logd.auditd.dmesg",
BOOL_DEFAULT_TRUE |
BOOL_DEFAULT_FLAG_PERSIST)
? fdDmesg
: -1);
}
LogKlog *kl = NULL;
if (klogd) {
kl = new LogKlog(logBuf, reader, fdDmesg, fdPmesg, al != NULL); // 核心逻辑在 LogKlog
}
readDmesg(al, kl);
// failure is an option ... messages are in dmesg (required by standard)
if (kl && kl->startListener()) { // startListener成功时返回 0, 失败返回非0(多数情况是-1)
delete kl;
}
if (al && al->startListener()) {
delete al;
}
TEMP_FAILURE_RETRY(pause());
exit(0);
}
```
## 1.6 Android 4.4 liblog
在Android 4.4 及更早的系统中, liblog并像现在这样通过socket把log传到logd, 而是直接写到
"/dev/log/main",
"/dev/log/events",
"/dev/log/system",
"dev/log/radio"
四个文件文件去.
liblog中残留的 "/system/core/liblog/logd_write_kern.c"就是残留的旧代码.
他们现在不生效的原因, 此源文件没有被包好在模块的Android.mk文件中, 不会参与编译.
往上有介绍如何打补丁,让高版本Android会到这种旧版日志的方法:
https://blog.csdn.net/kc58236582/article/details/72276041
其核心就是2点:
1> 让 logd_write_kern.c 参与编译.
2> 修改内核, 使其创建"/dev/log/*",并配置selinux. (目前上文中提到的这一点的连接已经失效)
理论上是可行的. 我们可以在logd莫名其妙挂掉的时候(最近于到这样的案例, 才产生研究log流程的需求)
, 将日志输出到这里来.
但是这并没有意思, 前面我们提到, 现有的代码中预留了"/dev/pmsg0"设备接管可存储log.
但是目前此文件也是没被创建, 所以不会有日志输出到这里.
目前看, logd挂掉非常罕见. 且logd挂了要找去挂了的原因, kernel log已经足够详细, User Log不会对定为logd挂的原因有帮助.
故"liblog库直接存log到其他文件"的需求暂定没有开发的意义.
## 2.0 stdout / stderr 与 logwrapper
据"网传", Android把系统标准输出设备 stdout / stderr 重定向到了 "/dev/null" (黑洞文件,有进无出)
而 logwrapper 则可以将 输出到 stdout / stderr 的信息重定向到"User Log".
这些没有深入跟进, 这里只对 logwrapper 用法做简单介绍:
```
$ adb shell logwrapper
Usage: logwrapper [-a] [-d] [-k] BINARY [ARGS ...]
Forks and executes BINARY ARGS, redirecting stdout and stderr to
the Android logging system. Tag is set to BINARY, priority is
always LOG_INFO.
-a: Causes logwrapper to do abbreviated logging.
This logs up to the first 4K and last 4K of the command
being run, and logs the output when the command exits
-d: Causes logwrapper to SIGSEGV when BINARY terminates
fault address is set to the status of wait()
-k: Causes logwrapper to log to the kernel log instead of
the Android system log
参数说明:
-a 仅拿最前面 和最后面 4K (一共最多8K)的日志
-d 被操作进程如果发生内存错误而终结, 就给它发 SIGSEGV 信号.
-k 重定向到 "Kernel log" (默认是重定向到 User Log)
BINARY 是目标, 如"ps"命令.
[ARGS ...] 是给目标可执行文件传的参数.
用法示范:
// 执行 "ps" 命令, 并将其的输出信息 重定向"User Log"
$ adb shell logwrapper ps
// 执行 "ps" 命令, 并将其的输出信息 重定向"Kernel Log"
$ adb shell logwrapper -k ps
以上两个分身执行后, 可以通过 logcat 或 dmesg 查看拿到 ps的输出信息了.
```
## 3.0 kernel log
在内核模块的代码, 通常通过 "printk" 这个"宏函数"输出 Kernel log.
用法简单. 不做介绍.
最终 Kernel log会输出到 "/proc/kmsg", "/dev/kmsg" 这两个文件.
"/dev/kmsg"是循环缓冲区, 存储所有 kernel log(超出缓冲区的旧log除外).
"adb shell dmesg" 命令是取的这个文件的内容.
"adb shell cat /proc/kmsg" 则可以只拿这条命令执行之后才输出的 kernel log, 且是持续监听更新.
这点比dmesg好,(dmesg是取一次 kernel log, 然后就退出了) , 在开发中, 方便我们实时的看最新的 kernel log .
ps:就是需要root权限. 限制了使用.
## 3.1 libcutils user space print kernel log
"/system/core/init/log.cpp" 中的 init_klog_write() 函数 可以让应用也能写 Kernel log.
代码很简单, 就是在写 "/dev/kmsg" 文件.
也就是说, 应用得有访问 "/dev/kmsg" 的权限 (尤其是 selinux限制), 才能写 kernel log.
# 4.0 贝海拾遗
### 4.1 局部编译问题
试验发现, 对liblog的修改, 局部编译该模块 push到手机, 修改不能生效.
(使用 "adb sync system" 命令, 已经确保编译出争取的 liblog.so, 且成功push到手机, 且有重启手机)
全编才生效.
猜测:其他so库静态依赖这个so库.别人用的是其他二次包装的库?
### 4.2 System.out.println("test-system.out");
" System.out.println("xx") " 输出的信息, 也可以在 logcat 中看到.
其实际上是输出到系统标输出设备.
```
// /libcore/ojluni/src/main/java/java/lang/System.java
public final static InputStream in;
/**
* The "standard" output stream. This stream is already
* open and ready to accept output data. Typically this stream
* corresponds to display output or another output destination
* specified by the host environment or user.
*
* For simple stand-alone Java applications, a typical way to write
* a line of output data is:
*
* System.out.println(data)
*
* See the println
methods in class PrintStream
.
*
* @see java.io.PrintStream#println()
* @see java.io.PrintStream#println(boolean)
* @see java.io.PrintStream#println(char)
* @see java.io.PrintStream#println(char[])
* @see java.io.PrintStream#println(double)
* @see java.io.PrintStream#println(float)
* @see java.io.PrintStream#println(int)
* @see java.io.PrintStream#println(long)
* @see java.io.PrintStream#println(java.lang.Object)
* @see java.io.PrintStream#println(java.lang.String)
*/
public final static PrintStream out;
public final static PrintStream err;
static {
// ...
FileInputStream fdIn = new FileInputStream(FileDescriptor.in);
FileOutputStream fdOut = new FileOutputStream(FileDescriptor.out);
FileOutputStream fdErr = new FileOutputStream(FileDescriptor.err);
in = new BufferedInputStream(fdIn);
out = new PrintStream(fdOut);
err = new PrintStream(fdErr);
// ...
}
// /libcore/ojluni/src/main/java/java/io/FileDescriptor.java
/**
* A handle to the standard input stream. Usually, this file
* descriptor is not used directly, but rather via the input stream
* known as System.in
.
*
* @see java.lang.System#in
*/
public static final FileDescriptor in = dupFd(0);
/**
* A handle to the standard output stream. Usually, this file
* descriptor is not used directly, but rather via the output stream
* known as System.out
.
* @see java.lang.System#out
*/
public static final FileDescriptor out = dupFd(1);
/**
* A handle to the standard error stream. Usually, this file
* descriptor is not used directly, but rather via the output stream
* known as System.err
.
*
* @see java.lang.System#err
*/
public static final FileDescriptor err = dupFd(2);
```
" System.out.println("xx") "实际上就是输出到FD=1的文件去. 而这个文件是系统事先打开, 任意进程可直接使用的. 据"网传", Android 会把输出到标准出设备的数据重定向到"/dev/null".
暂没有从源码上找到直接的证据. 仅发现logwrapper可以做到把输出到标准输出设备的数据重定向到Android特有日志系统来.
这个问题可以再深入看下.