Matrix multiplication problem is a typical example of dynamical programming.
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
SecondPart = Line { Line }
Line = Expression
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
0
0
0
error
10000
error
3500
15000
40500
47500
15125
题目大意:两个矩阵相乘,会有一个乘法次数,比如:A(50*10),B(10*20),A*B的乘法次数为50*10*20=10000次。现在给N个矩阵及它们的行列数。接下来有若干个乘法算式,求每个算式的乘法次数。
分析:通过这道题,联系C++标准库中stack和map的用法。用map储存每个矩阵的行列数。用stack来计算。
若仅有一个矩阵,则乘法次数为0。
如果当前字符为矩阵编号,入栈;为')'则选取前两个矩阵出栈统计乘法次数,并将新矩阵的行列数用map储存,再次入栈。
代码如下:
#include
#include
#include
#include
#include
#include
#include
#include