cuda8.0+cudnn5.1+python2.7
关于tensorflow,cuda+cudnn等安装推荐教程:
http://blog.csdn.net/xierhacker/article/details/53035989
工具:tensorflow slim opencv numpy
参考:
https://github.com/tensorflow/models/tree/1630da3434974e9ad5a0b6d887ac716a97ce03d3/research/slim/
from datasets import dataset_utils需要tensorflow/models/research/slim/datasets
整体思路就是“通过训练好的vgg_16模型进行图像分类
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
sys.path.append("/home/sxl/models/slim")
from datasets import dataset_utils
import tensorflow as tf
url = "http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz"
# 指定保存路径
checkpoints_dir = '/home/sxl/models/checkpoints'
if not tf.gfile.Exists(checkpoints_dir):
tf.gfile.MakeDirs(checkpoints_dir)
dataset_utils.download_and_uncompress_tarball(url, checkpoints_dir)
下载models/slim下的文件夹
此步注重的是局部类别,根据概率排名,很清楚地看出分类。
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
sys.path.append("/home/sxl/models/slim")
from matplotlib import pyplot as plt
import numpy as np
import cv2
import tensorflow as tf
from datasets import imagenet
from nets import vgg
from preprocessing import vgg_preprocessing
checkpoints_dir = '/home/sxl/models/checkpoints'
slim=tf.contrib.slim
image_size=vgg.vgg_16.default_image_size
with tf.Graph().as_default():
# Open specified url and load image as a string
# Decode string into matrix with intensity values
image = cv2.imread("/home/sxl/1214/tiger.jpg")
image=cv2.cvtColor(image, 4)
plt.imshow(image)
plt.suptitle("The tiger",
fontsize=14, fontweight='bold')
plt.axis('off')
plt.show()
# Resize the input image, preserving the aspect ratio
# and make a central crop of the resulted image.
# The crop will be of the size of the default image size of
# the network.
processed_image = vgg_preprocessing.preprocess_image(image,
image_size,
image_size,
is_training=False)
# Networks accept images in batches.
# The first dimension usually represents the batch size.
# In our case the batch size is one.
processed_images = tf.expand_dims(processed_image, 0)
# Create the model, use the default arg scope to configure
# the batch norm parameters. arg_scope is a very conveniet
# feature of slim library -- you can define default
# parameters for layers -- like stride, padding etc.
with slim.arg_scope(vgg.vgg_arg_scope()):
logits, _ = vgg.vgg_16(processed_images,
num_classes=1000,
is_training=False)
# In order to get probabilities we apply softmax on the output.
probabilities = tf.nn.softmax(logits)
# Create a function that reads the network weights
# from the checkpoint file that you downloaded.
# We will run it in session later.
init_fn = slim.assign_from_checkpoint_fn(
os.path.join(checkpoints_dir, 'vgg_16.ckpt'),
slim.get_model_variables('vgg_16'))
with tf.Session() as sess:
# Load weights
init_fn(sess)
# We want to get predictions, image as numpy matrix
# and resized and cropped piece that is actually
# being fed to the network.
network_input, probabilities = sess.run([processed_image,probabilities])
probabilities = probabilities[0, 0:]
sorted_inds = [i[0] for i in sorted(enumerate(-probabilities),
key=lambda x:x[1])]
# Show the downloaded image
# Show the image that is actually being fed to the network
# The image was resized while preserving aspect ratio and then
# cropped. After that, the mean pixel value was subtracted from
# each pixel of that crop. We normalize the image to be between [-1, 1]
# to show the image.
plt.imshow( network_input / (network_input.max() - network_input.min()) )
plt.suptitle("Resized, Cropped and Mean-Centered input to network",
fontsize=14, fontweight='bold')
plt.axis('off')
plt.show()
names = imagenet.create_readable_names_for_imagenet_labels()
for i in range(5):
print "5 things"
index = sorted_inds[i]
# Now we print the top-5 predictions that the network gives us with
# corresponding probabilities. Pay attention that the index with
# class names is shifted by 1 -- this is because some networks
# were trained on 1000 classes and others on 1001. VGG-16 was trained
# on 1000 classes.
print('Probability %0.2f => [%s]' % (probabilities[index], names[index+1]))
res = slim.get_model_variables()
2018-03-23 17:58:19.977279: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 17:58:19.977351: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
5 things
Probability 1.00 => [lion, king of beasts, Panthera leo]
5 things
Probability 0.00 => [chow, chow chow]
5 things
Probability 0.00 => [collie]
5 things
Probability 0.00 => [baboon]
5 things
Probability 0.00 => [ox]
在复杂场景下,需要全图的类别情况,需要分割并显示。
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
sys.path.append("/home/sxl/models/slim")
from matplotlib import pyplot as plt
import numpy as np
import cv2
import tensorflow as tf
import urllib2
from datasets import imagenet
from nets import vgg
from preprocessing import vgg_preprocessing
checkpoints_dir = '/home/sxl/models/checkpoints'
slim=tf.contrib.slim
image_size=vgg.vgg_16.default_image_size
# Load the mean pixel values and the function
# that performs the subtraction
from preprocessing.vgg_preprocessing import (_mean_image_subtraction,
_R_MEAN, _G_MEAN, _B_MEAN)
# Function to nicely print segmentation results with
# colorbar showing class names
def discrete_matshow(data, labels_names=[], title=""):
print "matshow begin"
#get discrete colormap
cmap = plt.get_cmap('Paired', np.max(data)-np.min(data)+1)
# set limits .5 outside true range
mat = plt.matshow(data,
cmap=cmap,
vmin = np.min(data)-.5,
vmax = np.max(data)+.5)
#tell the colorbar to tick at integers
cax = plt.colorbar(mat,
ticks=np.arange(np.min(data),np.max(data)+1))
# The names to be printed aside the colorbar
if labels_names:
cax.ax.set_yticklabels(labels_names)
if title:
plt.suptitle(title, fontsize=14, fontweight='bold')
plt.show()
with tf.Graph().as_default():
image01 = cv2.imread("/home/sxl/1214/tiger.jpg")
image=cv2.cvtColor(image01,4)
# Convert image to float32 before subtracting the
# mean pixel value
image_float = tf.to_float(image, name='ToFloat')
# Subtract the mean pixel value from each pixel
processed_image = _mean_image_subtraction(image_float,
[_R_MEAN, _G_MEAN, _B_MEAN])
input_image = tf.expand_dims(processed_image, 0)
with slim.arg_scope(vgg.vgg_arg_scope()):
# spatial_squeeze option enables to use network in a fully
# convolutional manner
logits, _ = vgg.vgg_16(input_image,
num_classes=1000,
is_training=False,
spatial_squeeze=False)
# For each pixel we get predictions for each class
# out of 1000. We need to pick the one with the highest
# probability. To be more precise, these are not probabilities,
# because we didn't apply softmax. But if we pick a class
# with the highest value it will be equivalent to picking
# the highest value after applying softmax
pred = tf.argmax(logits, dimension=3)
init_fn = slim.assign_from_checkpoint_fn(
os.path.join(checkpoints_dir, 'vgg_16.ckpt'),
slim.get_model_variables('vgg_16'))
with tf.Session() as sess:
init_fn(sess)
segmentation = sess.run([pred])
# Remove the first empty dimension
segmentation = np.squeeze(segmentation)
# Let's get unique predicted classes (from 0 to 1000) and
# relable the original predictions so that classes are
# numerated starting from zero
unique_classes, relabeled_image = np.unique(segmentation,
return_inverse=True)
segmentation_size = segmentation.shape
print unique_classes
relabeled_image = relabeled_image.reshape(segmentation_size)
labels_names = []
names = imagenet.create_readable_names_for_imagenet_labels()
for index, current_class_number in enumerate(unique_classes):
labels_names.append(str(index) + ' ' + names[current_class_number+1])
print labels_names
discrete_matshow(data=relabeled_image, labels_names=labels_names, title="Segmentation")
运行结果:
2018-03-24 10:13:50.749747: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-24 10:13:50.749815: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
[ 9 101 134 138 172 176 177 178 207 231 232 246 272 276 291 331 343 345
353 385 805]
['0 ostrich, Struthio camelus', '1 tusker', '2 crane', '3 bustard', '4 whippet', '5 Saluki, gazelle hound', '6 Scottish deerhound, deerhound', '7 Weimaraner', '8 golden retriever', '9 collie', '10 Border collie', '11 Great Dane', '12 coyote, prairie wolf, brush wolf, Canis latrans', '13 hyena, hyaena', '14 lion, king of beasts, Panthera leo', '15 hare', '16 warthog', '17 ox', '18 gazelle', '19 Indian elephant, Elephas maximus', '20 soccer ball']