- NVIDIA L40s、A10、A40、A100、A6000横评,哪个GPU 更适合 AI 推理任务?
DO_Community
技术科普商业建议人工智能gpu算力DigitalOceanaiAIGC
近年来,随着人工智能技术的发展,特别是深度学习模型的广泛应用,GPU(图形处理单元)作为加速计算的重要硬件,在AI领域扮演着越来越重要的角色。AI推理是指已经训练好的模型对新数据进行预测的过程。与训练阶段相比,推理通常对GPU的要求有所不同,更注重于能效比、延迟以及并发处理能力。本文将从这些角度出发,对比分析NVIDIA的L40s、A10、A40、A100、A6000五款GPU在AI推理任务中的表
- 航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)
Want595
Python数据分析数据挖掘numpypandas
文章目录航空客户价值的数据挖掘与分析(numpy+pandas+matplotlib+scikit-learn)写在前面背景与挖掘目标1.1需求背景1.2挖掘目标1.3项目概述项目分析方法规划2.1RFM模型2.2LRFMC模型指标2.3分析总体流程图数据抽取探索及预处理3.1数据抽取3.2数据探索分析3.3数据预处理3.3.1数据清洗3.3.2属性规约3.3.3数据变换数据建模&应用4.1模型构
- [预训练语言模型专题] 百度出品ERNIE合集,问国产预训练语言模型哪家强
yang191919
朴素人工智能百度编程语言机器学习人工智能深度学习
本文为预训练语言模型专题系列第七篇系列传送门[萌芽时代]、[风起云涌]、[文本分类通用技巧]、[GPT家族]、[BERT来临]、[BE
- [E题成品文章发布]2025美赛数学建模E题35页成品论文+每小问配套py+matlab代码+完整数据集+高清可视化结果图
2025数学建模资料汇总
2025美赛数学建模E题数学建模matlab开发语言
基于生态模型的有机农业管理策略研究:除草剂移除与物种引入的生态影响分析摘要随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。完整版获取如下地址:点击加入【2025美国大学生数学建模竞赛】:http://qm.qq.com/cgi-bin/qm/qr?_wv=
- 文本嵌入技术Text Embedding模型详解:text2vec、OpenAI ada-002到M3E及BGE-M3的演变
汀、人工智能
embeddingRAG文本嵌入词嵌入模型m3ebge
TextEmbedding模型:从text2vec、openai-textembedding到m3e、BGE1.TextEmbedding榜单:MTEB、C-MTEB1.1《MTEB:MassiveTextEmbeddingBenchmark(海量文本嵌入基准)》判断哪些文本嵌入模型效果较好,通常需要一个评估指标来进行比较,《MTEB:MassiveTextEmbeddingBenchmark(海
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- Rasa框架的优点和缺点
不会编程的程序猿ᅟ
rasa
优点1.开源和免费Rasa是开源的,无需支付许可费用,可自由下载和修改源码,适合预算有限或需要定制化解决方案的团队。企业可以完全掌控自己的对话系统,无需依赖外部服务。2.数据隐私和安全Rasa支持完全本地部署,无需将数据上传到第三方服务器,数据隐私保护性高,非常适合医疗、金融和其他注重数据安全的行业。3.高度可定制化可以根据需求修改NLU管道、策略和模型。支持自定义动作(CustomActions
- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- WGAN - 瓦萨斯坦生成对抗网络
池央
生成对抗网络人工智能神经网络
1.背景与问题生成对抗网络(GenerativeAdversarialNetworks,GANs)是由IanGoodfellow等人于2014年提出的一种深度学习模型。它包括两个主要部分:生成器(Generator)和判别器(Discriminator),两者通过对抗训练的方式,彼此不断改进,生成器的目标是生成尽可能“真实”的数据,而判别器的目标是区分生成的数据和真实数据。虽然传统GAN在多个领域
- OSI 网络模型:互联网通信的七层架构
山禾女鬼001
网络架构
在现代计算机网络中,OSI(开放系统互联)模型是一个重要的概念,它为网络通信过程提供了标准化的框架。这个模型帮助我们理解不同网络协议在通信过程中的作用,并为网络设备和系统的设计与故障排除提供了理论依据。什么是OSI模型?OSI模型(OpenSystemsInterconnectionModel,开放系统互联模型)由国际标准化组织(ISO)于1984年提出,目的是为不同厂商和不同类型的计算机网络设备
- 【C++基础】多线程并发场景下的同步方法
kucupung
C++c++开发语言
如果在多线程程序中对全局变量的访问没有进行适当的同步控制(例如使用互斥锁、原子变量等),会导致多个线程同时访问和修改全局变量时发生竞态条件(racecondition)。这种竞态条件可能会导致一系列不确定和严重的后果。在C++中,可以通过使用互斥锁(mutex)、原子操作、读写锁来实现对全局变量的互斥访问。一、缺乏同步控制造成的后果1.数据竞争(DataRace)数据竞争发生在多个线程同时访问同一
- 【大模型】AutoDL部署AI绘图大模型Stable Diffusion使用详解
小码农叔叔
AI大模型实战与应用AutoDL部署AI绘图大模型AI绘图大模型AutoDL部署SDAI绘图大模型SD使用详解SD使用详解SD部署
目录一、前言二、AI绘图大模型概述2.1AI绘图大模型介绍2.2AI绘图大模型特点2.3AI绘图大模型优势三、主流的AI绘图大模型介绍3.1Midjourney3.1.1Midjourney介绍3.1.2Midjourney功能特点3.1.3Midjourney使用场景3.2StableDiffusion3.2.1StableDiffusion介绍3.2.2StableDiffusion特点3.2
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- python广告点击率预测_常见计算广告点击率预估算法总结
weixin_39850143
python广告点击率预测
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~作者:导语:本文讨论了CTR预估模型,包括工业界使用比较广的比较经典模型和学术界最新的结合DeepLearning的一些工作。前言谈到CTR,都多多少少有些了解,尤其在互联网广告这块,简而言之,就是给某个网络服务使用者推送一个广告,该广告被点击的概率,这个问题难度简单到街边算命随口告诉你今天适不适合娶亲、适不适合搬迁一样,也可以复杂到拿到
- 广告计算学 刘鹏 听课笔记
qq415581343
广告计算笔记刘鹏
1.1广告的目的三个主体:advertisermediumaudience广告是非人员的、低成本的用户接触(reach)品牌(brank)广告vs效果(direct)广告:离线转化率vs即时转化1.2广告有效性模型三个阶段选择:曝光-广告位属性;关注-减少干扰、推荐解释、符合需求;解释:理解-用户能看懂;信息接受-认同(广告位不能只看流量,要高大上);态度:保持-艺术性带来的记忆效果;购买-价格可
- InternLM: LMDeploy 量化部署进阶实践
dilvx
机器学习
LMDeploy部署模型模型部署是将训练好的深度学习模型在特定环境中运行。欢迎使用LMDeploy,支持市面上主流的格式和算法。大模型缓存推理本章的前半部分主要讲量化,包括KV-Cache量化、权重量化、激活值量化。量化主要是为了节省存储空间,用int4,int8来重新表示fp16,将模型的显存占用控制在200G可接受的范围下。值得注意的是,在transformer架构下,计算的瓶颈主要在显存带宽
- 电商平台架构设计与微服务部署
Go小鸟编程
微服务电商golang后端架构云原生
电商业务模型分析电商业务是一个涵盖广泛、交互复杂的系统,涉及用户浏览商品、下单购物、支付、订单处理、物流配送等多个环节。从业务的角度进行拆解可以更好地理解和组织各个方面的功能。以下是对电商业务场景、业务模型和工作链路的拆解。买家视角电商系统的本质是促进商品和服务的在线买卖,面向买家用户的工作流是电商系统的核心卖家视角从商家的视角,电商系统的一般工作流程涉及商品管理、订单处理、售后服务等多个环节:平
- Pytorch实现论文:对GAN的交替优化
LJ1147517021
GAN系列生成对抗网络计算机视觉人工智能pytorch机器学习深度学习
简介这次带来的是ClosingtheGapBetweenTheoryandPracticeDuringAlternatingOptimizationforGANs,Gans交替优化中缩小理论与实践的差距这篇论文的一个核心代码在ACGAN模型上的效果测试,核心是修改了损失函数部分的计算。作者的实验是在StyleGAN上进行的。论文简介论文题目:ClosingtheGapBetweenTheoryan
- 2023美赛数学建模C题思路复盘,备战24美赛!
喜欢一个人_
大数据人工智能数学建模
目录2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述拟解决的问题我们的工作:二、模型和计算1.数据预处理2.报告数量区间预测模型3.猜词结果分布预测模型3.词汇难度分类模型2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述Homer是棒球运动中的术语,是非正式的美式英语单词。令人惊讶的是,Homer(本垒打)在剑桥词典网
- 全场景深度思考模型发布:囊括三大推理能力,解锁医疗循证模式
量子位
1月24日,百川智能发布了国内首个全场景深度思考模型Baichuan-M1-preview。该模型是国内目前唯一同时具备语言、视觉和搜索三大领域推理能力的模型。在数学、代码等多个权威评测中,Baichuan-M1-preview的表现均超越了o1-preview,展现了其在多领域推理方面的独特优势。此外,作为国内唯一专注医疗领域的头部大模型公司推出的深度思考模型,它还解锁了医疗循证模式,实现了从医
- 《数据孤岛:AI模型训练之殇,精度与泛化的双重困境》
人工智能深度学习
在人工智能飞速发展的当下,数据就是模型的“燃料”。从医疗影像诊断到智能交通调度,从电商推荐系统到金融风险预测,AI模型的精准度与泛化能力,决定了其在实际应用中的价值。然而,一个棘手的问题正阻碍着AI前行的步伐——数据孤岛。数据孤岛,是指在组织内部或不同组织之间,由于系统、管理或流程的原因,数据被孤立存储在不同的数据库、应用程序或部门中,彼此之间缺乏有效的连接和整合。据权威机构调研,在高度信息化的企
- 简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
周杰伦_Jay
大模型LLMs分类数据挖掘人工智能机器学习生成对抗网络transformer算法
目录前言1、大模型的定义1.1、大模型与小模型的对比2、大模型相关概念区分2.1、基础模型(FoundationModel)2.2、超大模型(Ultra-largeModel)2.3、大语言模型(LargeLanguageModel,LLM)3、大模型的发展历程3.1、萌芽期(1950-2005)3.2、探索沉淀期(2006-2019)3.3、迅猛发展期(2020-至今)4、大模型的特点5、大模型
- 再分享API形式调用Dify项目应用
福安德信息科技
大模型python人工智能大模型llmdify
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模型应用开发最简明的Few-shotPrompt指南SemanticKernel:微软大模型开发框架——LangChain替代对话大模型Prompt是否需要
- 2025年国内外AI大模型的API接口网址整理
weixin_56968280
人工智能语言模型
本文将盘点国内外的知名度较高的AI大模型平台,其中包括AI大语言模型和AI多模态模型,方便大家一探究竟。AI大模型的api接口有哪些作用?智能写作:可以帮忙写文章、写小说、生成广告文案、起标题,还能改写文字让内容更吸引人。实时聊天:用于做聊天机器人,比如AI角色扮演、社交陪伴AI,甚至语音助手。知识问答:像百科一样快速回答各种问题,或者为特定领域(医疗、法律等)提供专业建议。教育学习:帮助学生做题
- 免费AI大模型API汇总(非常详细),零基础入门到精通,看这一篇就够了
大模型扬叔
人工智能免费AI大模型API汇总大模型
前言一、免费大模型API一览大模型免费版本免费限制控制台(api_key等)讯飞星火大模型spark-litetokens:总量无限;QPS:2;(每秒发送的请求数)有效期:不限访问链接百度千帆大模型平台ERNIE-Speed-8KRPM=300,TPM=300000(RPM是每分钟请求数(RequestsPerMinute),TPM是指每分钟处理的tokens数量)访问链接ERNIE-Speed
- NVIDIA-TensorRT-Python推理
呆呆珝
推理框架python人工智能开发语言
1,前言NVIDIATensorRT进行模型推理的Python实现。TensorRT是一个高性能的深度学习推理优化器和运行时,它能够为深度学习模型提供低延迟和高吞吐量的推理能力。(由于官方文档的使用还是比较简单,也可能自己很菜,参考了别人的文档和自己摸索,写出来这个可以使用的API)2.Python-API推理step1:导入基本库(环境自行配置)#导入TensorRT库importtensorr
- wps2019数据分析加载项_怎样用Excel做数据分析(电商案例)
weixin_39907939
wps2019数据分析加载项
一、数据分析步骤明确问题:知道你要研究什么问题,从而有目地的查找数据理解数据:寻找与问题相关的数据;从数据中你能得出的信息;理解字段信息数据清洗(数据预处理):选择子集;列名重命名;删除重复值;缺失值处理;一致化处理;数据排序;异常值处理数据分析或构建模型:数据透视表;在Excel安装数据分析功能(安装步骤:文件~选项~加载项~Excel加载项转到~分析工具库,注意!这是MicrosoftExce
- stable diffusion webui电商基础模型
Kun Li
多模态大语言模型stablediffusion
电商生成模型的产生主要有两个路子,1.训练微调;2.模型融合。下面这些是借鉴,帮助思考如何构建电商模型。电商必备的10款StablediffusionWebUI模型-知乎一、WFProduct电商场景这是一个专门为电商摄影场景训练的lora模型,可以生成各种极具设计感的场景图,效果逼真,无论是电商、海报、产品渲染还是空间布置上都能用得到,可以解决产品摄影空间布景困难、创意度不…https://zh
- stable diffusion 模型和lora融合
Kun Li
图像视频生成大模型stablediffusion
炜哥的AI学习笔记——SuperMerger插件学习-哔哩哔哩接下来学习的插件名字叫做SuperMerger,它的作用正如其名,可以融合大模型或者LoRA,一般来说会结合之前的插件LoRABlockWeight使用,在调整完成LoRA模型的权重后使用改插件进行重新打包。除了LoRA,Checkpoint也可以通过这个插件进行融合合并。实际上,目前市面上存在大量的Checkpoint模型都是经由合并
- 国内外大模型免费访问入口汇总
SmallerFL
NLP&机器学习大模型nlp自然语言处理深度学习gpt
1.前言2024年4月18日,清华大学基础模型研究中心发布了《SuperBench大模型综合能力评测报告》,评测涉及到的国内外大模型如下:文中从多个方面进行评测,具体包含:语义评测、代码评测、对齐评测、智能体评测、安全评测等五大方面,见下图:结论:GPT-4系列模型和Claude-3**等国外模型在多个能力上依然处于领先地位**,国内头部大模型表现亮眼,与国际一流模型水平接近,且差距已经逐渐缩小。
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name