tensorflow训练验证码识别模型

tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单:

 

pip install captcha

 

生成验证码:

# -*- coding: utf-8 -*-
from captcha.image import ImageCaptcha  # pip install captcha
import numpy as np
from PIL import Image
import random
import cv2
import os
 
# 验证码中的字符
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
 
# alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
#             'v', 'w', 'x', 'y', 'z']
# ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
#             'V', 'W', 'X', 'Y', 'Z']
 
# 验证码长度为4个字符
def random_captcha_text(char_set=number, captcha_size=4):
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text
 
 
# 生成字符对应的验证码
def gen_captcha_text_and_image():
    image = ImageCaptcha()
 
    captcha_text = random_captcha_text()
    captcha_text = ''.join(captcha_text)
 
    captcha = image.generate(captcha_text)
 
    captcha_image = Image.open(captcha)
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image
 
 
if __name__ == '__main__':

    # 训练集和测试集数量
    train_num = 10000
    valid_num = 3000

    #保存路径
    path_train = './trainImage'
    path_valid = './validImage'
    if not os.path.exists(path_train):
        os.mkdir(path_train)
    if not os.path.exists(path_valid):
        os.mkdir(path_valid)

    for i in range(train_num):
        text, image = gen_captcha_text_and_image()
        fullPath = os.path.join(path_train, text + ".jpg")
        cv2.imwrite(fullPath, image)
        print "Creating train data: {0}/{1}".format(i,train_num)
    for i in range(valid_num):
        text, image = gen_captcha_text_and_image()
        fullPath = os.path.join(path_valid, text + ".jpg")
        cv2.imwrite(fullPath, image)
        print "Creating valid data: {0}/{1}".format(i, valid_num)
    print "Done!"

 

分别生成训练样本和测试样本,生成的样本图片如下:


tensorflow训练验证码识别模型_第1张图片

 

 

 

使用tensorflow执行训练:

# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import cv2
import os
import random
import time

# number
number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

# 图像大小
IMAGE_HEIGHT = 60  # 80
IMAGE_WIDTH = 160  # 160
MAX_CAPTCHA = 4

char_set = number
CHAR_SET_LEN = len(char_set)  #

image_filename_list = []
total = 0

train_path = './trainImage'
valid_path = './trainImage'


def get_image_file_name(imgFilePath):
    fileName = []
    total = 0
    for filePath in os.listdir(imgFilePath):
        captcha_name = filePath.split('/')[-1]
        fileName.append(captcha_name)
        total += 1
    random.seed(time.time())
    # 打乱顺序
    random.shuffle(fileName)
    return fileName, total


# 获取训练数据的名称列表
image_filename_list, total = get_image_file_name(train_path)
# 获取测试数据的名称列表
image_filename_list_valid, total = get_image_file_name(valid_path)


# 读取图片和标签
def gen_captcha_text_and_image(imageFilePath, image_filename_list, imageAmount):
    num = random.randint(0, imageAmount - 1)
    img = cv2.imread(os.path.join(imageFilePath, image_filename_list[num]), 0)
    img = cv2.resize(img, (160, 60))
    img = np.float32(img)
    text = image_filename_list[num].split('.')[0]
    return text, img


# 文本转向量
# 例如,如果验证码是 ‘0296’ ,则对应的标签是
# [1 0 0 0 0 0 0 0 0 0
#  0 0 1 0 0 0 0 0 0 0
#  0 0 0 0 0 0 0 0 0 1
#  0 0 0 0 0 0 1 0 0 0]
def name2label(name):
    label = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
    for i, c in enumerate(name):
        idx = i * CHAR_SET_LEN + ord(c) - ord('0')
        label[idx] = 1
    return label


# label to name
def label2name(digitalStr):
    digitalList = []
    for c in digitalStr:
        digitalList.append(ord(c) - ord('0'))
    return np.array(digitalList)


# 文本转向量
def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
        raise ValueError('验证码最长4个字符')

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

    def char2pos(c):
        if c == '_':
            k = 62
            return k
        k = ord(c) - 48
        if k > 9:
            k = ord(c) - 55
            if k > 35:
                k = ord(c) - 61
                if k > 61:
                    raise ValueError('No Map')
        return k

    for i, c in enumerate(text):
        idx = i * CHAR_SET_LEN + char2pos(c)
        vector[idx] = 1
    return vector


# 向量转回文本
def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text = []
    for i, c in enumerate(char_pos):
        char_at_pos = i  # c/63
        char_idx = c % CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord('0')
        elif char_idx < 36:
            char_code = char_idx - 10 + ord('A')
        elif char_idx < 62:
            char_code = char_idx - 36 + ord('a')
        elif char_idx == 62:
            char_code = ord('_')
        else:
            raise ValueError('error')
        text.append(chr(char_code))
    return "".join(text)


# 生成一个训练batch
def get_next_batch(imageFilePath, image_filename_list=None, batch_size=128):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    def wrap_gen_captcha_text_and_image(imageFilePath, imageAmount):
        while True:
            text, image = gen_captcha_text_and_image(imageFilePath, image_filename_list, imageAmount)
            if image.shape == (60, 160):
                return text, image

    for listNum in os.walk(imageFilePath):
        pass
    imageAmount = len(listNum[2])

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image(imageFilePath, imageAmount)

        batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y


####################################################################
# 占位符,X和Y分别是输入训练数据和其标签,标签转换成8*10的向量
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
# 声明dropout占位符变量
keep_prob = tf.placeholder(tf.float32)  # dropout


# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    # 把 X reshape 成 IMAGE_HEIGHT*IMAGE_WIDTH*1的格式,输入的是灰度图片,所有通道数是1;
    # shape 里的-1表示数量不定,根据实际情况获取,这里为每轮迭代输入的图像数量(batchsize)的大小;
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # 搭建第一层卷积层
    # shape[3, 3, 1, 32]里前两个参数表示卷积核尺寸大小,即patch;
    # 第三个参数是图像通道数,第四个参数是该层卷积核的数量,有多少个卷积核就会输出多少个卷积特征图像
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    # 每个卷积核都配置一个偏置量,该层有多少个输出,就应该配置多少个偏置量
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    # 图片和卷积核卷积,并加上偏执量,卷积结果28x28x32
    # tf.nn.conv2d() 函数实现卷积操作
    # tf.nn.conv2d()中的padding用于设置卷积操作对边缘像素的处理方式,在tf中有VALID和SAME两种模式
    # padding='SAME'会对图像边缘补0,完成图像上所有像素(特别是边缘象素)的卷积操作
    # padding='VALID'会直接丢弃掉图像边缘上不够卷积的像素
    # strides:卷积时在图像每一维的步长,是一个一维的向量,长度4,并且strides[0]=strides[3]=1
    # tf.nn.bias_add() 函数的作用是将偏置项b_c1加到卷积结果value上去;
    # 注意这里的偏置项b_c1必须是一维的,并且数量一定要与卷积结果value最后一维数量相同
    # tf.nn.relu() 函数是relu激活函数,实现输出结果的非线性转换,即features=max(features, 0),输出tensor的形状和输入一致
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    # tf.nn.max_pool()函数实现最大池化操作,进一步提取图像的抽象特征,并且降低特征维度
    # ksize=[1, 2, 2, 1]定义最大池化操作的核尺寸为2*2, 池化结果14x14x32 卷积结果乘以池化卷积核
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    # tf.nn.dropout是tf里为了防止或减轻过拟合而使用的函数,一般用在全连接层;
    # Dropout机制就是在不同的训练过程中根据一定概率(大小可以设置,一般情况下训练推荐0.5)随机扔掉(屏蔽)一部分神经元,
    # 不参与本次神经网络迭代的计算(优化)过程,权重保留但不做更新;
    # tf.nn.dropout()中 keep_prob用于设置概率,需要是一个占位变量,在执行的时候具体给定数值
    conv1 = tf.nn.dropout(conv1, keep_prob)
    # 原图像HEIGHT = 60 WIDTH = 160,经过神经网络第一层卷积(图像尺寸不变、特征×32)、池化(图像尺寸缩小一半,特征不变)之后;
    # 输出大小为 30*80*32

    # 搭建第二层卷积层
    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)
    # 原图像HEIGHT = 60 WIDTH = 160,经过神经网络第一层后输出大小为 30*80*32
    # 经过神经网络第二层运算后输出为 16*40*64 (30*80的图像经过2*2的卷积核池化,padding为SAME,输出维度是16*40)

    # 搭建第三层卷积层
    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)
    # 原图像HEIGHT = 60 WIDTH = 160,经过神经网络第一层后输出大小为 30*80*32 经过第二层后输出为 16*40*64
    # 经过神经网络第二层运算后输出为 16*40*64 ; 经过第三层输出为 8*20*64,这个参数很重要,决定量后边全连接层的维度

    # 搭建全连接层
    # 二维张量,第一个参数8*20*64的patch,这个参数由最后一层卷积层的输出决定,第二个参数代表卷积个数共1024个,即输出为1024个特征
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
    # 偏置项为1维,个数跟卷积核个数保持一致
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    # w_d.get_shape()作用是把张量w_d的形状转换为元组tuple的形式,w_d.get_shape().as_list()是把w_d转为元组再转为list形式
    # w_d 的 形状是[ 8 * 20 * 64, 1024],w_d.get_shape().as_list()结果为 8*20*64=10240 ;
    # 所以tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])的作用是把最后一层隐藏层的输出转换成一维的形式
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    # tf.matmul(dense, w_d)函数是矩阵相乘,输出维度是 -1*1024
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)
    # 经过全连接层之后,输出为 一维,1024个向量

    # w_out定义成一个形状为 [1024, 8 * 10] = [1024, 80]
    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    # out 的输出为 8*10 的向量, 8代表识别结果的位数,10是每一位上可能的结果(0到9)
    out = tf.add(tf.matmul(dense, w_out), b_out)
    # out = tf.nn.softmax(out)
    # 输出神经网络在当前参数下的预测值
    return out


# 训练
def train_crack_captcha_cnn():
    output = crack_captcha_cnn()
    # loss
    # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
    # tf.nn.sigmoid_cross_entropy_with_logits()函数计算交叉熵,输出的是一个向量而不是数;
    # 交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近
    # tf.reduce_mean()函数求矩阵的均值
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢减小
    # tf.train.AdamOptimizer()函数实现了Adam算法的优化器
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        while True:
            batch_x, batch_y = get_next_batch(train_path, image_filename_list, 64)
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
            print(step, loss_)
            # 每100 step计算一次准确率
            if step % 100 == 0:
                batch_x_test, batch_y_test = get_next_batch(valid_path, image_filename_list_valid, 128)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                print(step, acc)

                # 训练结束条件
                if acc > 0.98 or step > 6000:
                    saver.save(sess, "./model/crack_capcha.model", global_step=step)
                    break
            step += 1


def predict_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))

        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

        text = text_list[0].tolist()
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
        i = 0
        for n in text:
            vector[i * CHAR_SET_LEN + n] = 1
            i += 1
        return vec2text(vector)


# 执行训练
train_crack_captcha_cnn()
print "训练完成,请开始测试…"

 

大约执行1600轮迭代(batchsize=128)之后训练完成:

tensorflow训练验证码识别模型_第2张图片

 

训练结果在model文件夹下生成4个文件:

tensorflow训练验证码识别模型_第3张图片

 

 

测试单张验证码图片:

# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import cv2
import os
import random
import time
import sys

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# 图像大小
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = 4
char_set = number
CHAR_SET_LEN = len(char_set)
model_path = './model/'
image_path = './validImage'

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)  # dropout


# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # 3 conv layer
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv1 = tf.nn.dropout(conv1, keep_prob)

    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)

    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # Fully connected layer
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    # out = tf.nn.softmax(out)
    return out


# 向量转回文本
def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text = []
    for i, c in enumerate(char_pos):
        char_at_pos = i  # c/63
        char_idx = c % CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord('0')
        elif char_idx < 36:
            char_code = char_idx - 10 + ord('A')
        elif char_idx < 62:
            char_code = char_idx - 36 + ord('a')
        elif char_idx == 62:
            char_code = ord('_')
        else:
            raise ValueError('error')
        text.append(chr(char_code))
    return "".join(text)


def predict_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(model_path))

        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

        text = text_list[0].tolist()
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
        i = 0
        for n in text:
            vector[i * CHAR_SET_LEN + n] = 1
            i += 1
        return vec2text(vector)


if not os.path.exists(image_path):
    print('Image does not exist, please check!, path:"{}"'.format(os.path.abspath(image_path)))
    sys.exit()
image_list = os.listdir(image_path)


output = crack_captcha_cnn()

saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess, tf.train.latest_checkpoint(model_path))

    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

    for image_ in image_list:
        text_ = image_.split('.')[0]
        image_p = os.path.join(image_path, image_)
        # 单张图片预测
        image = np.float32(cv2.imread(image_p, 0))
        image = image.flatten() / 255

        text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})

        text = text_list[0].tolist()
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
        i = 0
        for n in text:
            vector[i * CHAR_SET_LEN + n] = 1
            i += 1
        predict_text= vec2text(vector)

        print("真实值: {0}  预测值: {1}".format(text_, predict_text))
        time.sleep(1)

 

由于captcha生成的验证码条件相对单一,使用训练出来的模型即便只有0.94的精度也比人工识别的精度要高了。预测结果正确:

tensorflow训练验证码识别模型_第4张图片

 

识别过程中加载测试图片注意进行精度转换(np.float32())。

这里可以下载训练好的模型文件: http://download.csdn.net/download/dcrmg/10195217

 

你可能感兴趣的:(深度学习,tensorflow)