- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- 奖励模型:解析大语言模型的关键工具
XianxinMao
人工智能
标题:奖励模型:解析大语言模型的关键工具文章信息摘要:奖励模型是理解和审核大语言模型(LLM)的重要工具,通过简单的评估方式提供了模型内部表征和性能的深入洞察。它不仅能静态比较模型表现,还可帮助诊断训练问题,为LLM研究提供独特视角,增强模型开发过程的透明度和可问责性。==================================================详细分析:核心观点:奖励模型是
- ACM寒假集训专题二总结
欢迎来到Anon Tokyo的世界
c++算法
噩梦般的二分法Easy1:#includeusingnamespacestd;intmain(){intn;cin>>n;intgroup[100000];for(inti=0;i>a;group[i]=a;}intq,x,ans,mid;cin>>q;intright=n-1;intleft=0;for(intj=0;j>x;while(right>=left){mid=(right+left)
- AI Agent(智能体)技术白皮书(Google,2024)
花生糖@
AIGC学习资料库人工智能AIAgent智能体AI实战
1引言1.1人类的先验知识与工具的使用人类很很好地处理复杂和微妙的模式识别任务。能做到这一点是因为,我们会通过书籍、搜索或计算器之类的工具来补充我们头脑中的先验知识,然后才会给出一个结论(例如,“图片中描述的是XX”)。1.2人类的模仿者与以上类似,我们可以对生成式AI模型进行训练,让它们能使用工具来在现实世界中获取实时信息或给出行动建议。例如,利用数据库查询工具获取客户的购物历史,然后给出购物建
- 寒假学web--day06
onehang.
网络安全php
简介今天的主要内容为文件上传,包括一些简单的和一些高级的绕过姿势一些小细节平时我们通过POST方式上传数据时,enctype是application/x-www-form-urlencode,而在文件上传时,是multipart/form-data上传的文件会存在超全局变量$_FILES里面上传的文件会先存放在临时目录里面,如果不进行后续的存储操作就会被清除存放文件的函数为move_upload_
- 字节的面试,感觉还挺简单的~
go后端面试问题面试字节跳动
今天分享的是训练营的朋友在字节跳动的面试,新鲜出炉的还热乎着呢。题目都挺简单的,但是他的面试体验不太好,因为面试官问了两个类似的问题,感觉有点不认真。下面是面试的内容:面经详解简单介绍下你的项目介绍下教育平台考试模块的业务.包括题目的读写试卷的生成创建之后,试题如何存储试卷如何分发给考生考生如何提交试卷,你们如何收集试卷结果最后怎么判题以下是对每个问题的回答:前端接口使用restful格式,pos
- 非凸科技荣登脉脉2024“年度职得去雇主”榜单
招聘
近日,2024脉脉MAX年度职场力量盛典暨年度“职得去”公司颁奖典礼在深圳举行,非凸科技受邀出席盛会并荣登脉脉2024“年度职得去雇主”榜单。本届评选依据脉脉独有的“雇主指数”以及专家评审意见综合评选而出,综合考量了企业在脉脉社区广场、同事圈、行业圈等多个频道口碑,并基于职场大数据训练的专属大模型,客观反映企业在职场人心中的口碑。非凸科技获此殊荣,也意味着在发展前景、工作氛围、薪酬福利等方面极具竞
- yolov5 解决:Traceback (most recent call last)
南商
YOLO深度学习
运行train.py程序后训练之后,到最后验证的那一步报一个线程异常的错误原因:pillow版本太高了,把pillow降级就行了pillow官网上的python对应版本在conda中,您可以安装pillow的任何可用版本。要查看可用的pillow版本,您可以使用以下命令:condasearchpillow这将列出所有可用的pillow版本。然后,您可以使用以下命令安装您选择的版本:condains
- 二、机器学习模型评估与选择
没见过西瓜嘛
机器学习学习笔记机器学习人工智能数据分析
机器学习模型评估与选择学习笔记一、核心概念1.1经验误差与过拟合误差相关定义错误率与精度:分类错误样本数占样本总数比例为错误率E=a/mE=a/mE=a/m,精度=1-错误率。训练误差与泛化误差:学习器在训练集上误差为训练误差(经验误差),在新样本上误差为泛化误差,泛化误差越小越好。过拟合与欠拟合过拟合:学习器把训练样本学得“太好”,将训练样本特点当作所有样本一般性质,导致泛化性能下降。欠拟合:学
- AI语言模型竞争加剧:新秀崛起 格局生变
XianxinMao
人工智能语言模型自然语言处理
标题:AI语言模型竞争加剧:新秀崛起格局生变文章信息摘要:AI语言模型领域呈现加速发展和分化态势。在LMSYS排行榜上,Claude3Opus超越GPT-4Turbo,DBRX超越Mixtral成为最佳开源模型,显示领先位置更替频繁。开源与闭源模型形成差异化发展路径:开源模型注重效率和架构创新,闭源API模型专注高端性能。模型训练成本呈现类摩尔定律式下降,每年降低75%。MoE架构在计算效率和性能
- 深度学习——模型过拟合和欠拟合的原因及解决方法
发呆小天才O.o
深度学习深度学习人工智能
一、定义1.过拟合(Overfitting)过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。2.欠拟合(Un
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- PAT (Basic Level) Practice 乙级1031-1040
今天_也很困
算法
制作不易,大家的点赞和关注就是我更新的动力!由于这些题全是大一寒假刷的,部分还是c语言,部分的解题方法比较复杂,希望大家体谅。有问题欢迎大家在评论区讨论,有不足也请大家指出,谢谢大家!温馨提示:可以点目录跳转到相应题目哦。1031查验身份证分数15作者CHEN,Yue单位浙江大学一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下:首先对前17位数字加权求和,
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- yolo系列训练从本机挪到服务器中的报错:modulenotfounderror:numpy._core
m0_57663261
YOLO服务器运维
记录一下就是我本身在本机跑起来能训练了,把文件拷贝到服务器中环境跑的时候,出现了报错modulenotfounderror:numpy._core我上网搜的好些说numpy有问题需要重新下载因为本机和服务器已有环境中的numpy版本不同,所以出现此报错但或许不用!我借鉴了ModuleNotFoundError:Nomodulenamed‘numpy._core‘_modulenotfounderr
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- C基础寒假练习
zm
算法数据结构
一、输出3-100以内的完美数,(完美数:因子和(因子不包含自身)=数本身#include//函数声明intisPerfectNumber(intnum);intmain(){printf("3-100以内的完美数有:\n");for(inti=3;iintmain(){introoster,hen,chick;intcount=0;//用于记录符合条件的组合数for(rooster=0;roos
- 0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
跟德姆(dom)一起学AI
人工智能自然语言处理分类python深度学习transformer
1文本分类介绍1.1文本分类概念文本分类的是将文档(例如电子邮件,帖子,文本消息,产品评论等)分配给一个或多个类别.当今文本分类的实现多是使用机器学习方法从训练数据中提取分类规则以进行分类,因此构建文本分类器需要带标签的数据.1.2文本分类种类二分类:文本被分类两个类别中,往往这两个类别是对立面,比如:判断一句评论是好评还是差评.单标签多分类:文本被分入到多个类别中,且每条文本只能属于某一个类别(
- 2025年美赛数学建模 Problem C: Models for Olympic Medal Tables 问题 C:奥运奖牌榜模型 详细解析和代码(持续更新中,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模开发语言2025年数学建模美赛2025美赛C题奥运奖牌榜模型
目录Python代码MATLAB代码2.模型框架2.1回归分析模型2.2集成学习方法2.3时间序列预测2.4模型不确定性估计3.数据处理与模型训练4.预测2028年奥运奖牌5.预测区间和不确定性6.哪些国家可能提高或下降?7.尚未获得奖牌的国家的预测8.奥运项目与奖牌数的关系2.教练与国家奖牌数的关联2.1定义“伟大教练”效应2.2数据分析方法2.3分析结果3.选择三个国家并确定应投资的运动项目3
- 第八章:AI大模型的未来发展趋势8.3 新兴应用领域8.3.2 生成对抗网络的应用
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍1.背景介绍生成对抗网络(GenerativeAdversarialNetworks,GANs)是一种深度学习技术,由伊玛·古德姆(IanGoodfellow)于2014年提出。GANs由两个相互对抗的神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器生成假数据,判别器试图区分假数据和真实数据。这种对抗训练方法使得GANs能够学习数据分布并生成高质
- 顶刊论文:一种用于病理学的多模态全切片基础模型 TITAN
思陌Ai算法定制
人工智能机器学习ai深度学习
“MultimodalWholeSlideFoundationModelforPathology”提出了一种用于病理学的多模态全切片基础模型TITAN,通过在大量组织切片图像(WSIs)上的自监督学习和视觉语言对齐预训练,TITAN能生成强大的通用切片表示,在多种临床任务中表现优异,为病理学研究和临床诊断提供了有力工具。1.**研究背景**-计算病理学中基础模型发展迅速,但将基于组织病理图像感兴趣
- GEE训练教程——基于Landsat C02数据的多指数计算和批量下载
此星光明
GEE教程训练前端数据库javascriptgeeLandsat指数下载
目录简介指数介绍代码解释代码结果简介GEE训练教程——基于LandsatC02数据的多指数计算和批量下载指数介绍NDVI:归一化差异植被指数(NormalizedDifferenceVegetationIndex)是通过比较近红外波段(NIR)和红波段(Red)的反射率来评估植被状况的指数。计算公式为:(NIR-Red)/(NIR+Red)。NDVI值范围从-1到1,数值越高表示植被越茂盛。EVI
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_1309399183
无人机类YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 对话小羊驼vicuna
Always_Shine
大模型人工智能深度学习大模型自然语言处理
文章目录1.gpu租用2.公网网盘存储实例/数据3.登录实例4.预训练模型下载5.llama、alpaca、vicuna的前世今生6.对话Vicuna(1)llama-2-7b-hf(2)vicuna-7b-delta-v0(3)vicuna-7b-v0(4)执行推理1.gpu租用阿里云(AlibabaCloud)https://www.aliyun.com腾讯云(TencentCloud)htt
- 大语言模型LLM基础扫盲速通版
SmallerFL
NLP&机器学习语言模型人工智能自然语言处理llmchatgpt
文章目录1.什么是LLM?2.LLM如何工作?3.LLM开发的关键里程碑4.训练可用LLM模型的完整流程5.LLM具备的能力6.领先的LLM模型包含哪些?7.建议从头开始训练LLM吗?8.LLM的训练数据源包含哪些?9.其他关于LLM的常见问题9.1Transformer在LLM中有何意义?9.2在LLM中,微调(fine-tuning)是什么?9.3模型大小如何影响LLM的性能?9.4LLM能生
- Firefly-LLaMA2-Chinese - 开源中文LLaMA2大模型
伊织产研
Firefly-LLaMA2LLaMA-2
文章目录关于模型列表&数据列表训练细节增量预训练&指令微调数据格式&数据处理逻辑增量预训练指令微调模型推理权重合并模型推理部署关于github:https://github.com/yangjianxin1/Firefly-LLaMA2-Chinese本项目与Firefly一脉相承,专注于低资源增量预训练,既支持对Baichuan2、Qwen、InternLM等原生中文模型进行增量预训练,也可对L
- ML.NET速览
aixing8475
人工智能操作系统runtime
什么是ML.NET?ML.NET是由微软创建,为.NET开发者准备的开源机器学习框架。它是跨平台的,可以在macOS,Linux及Windows上运行。机器学习管道ML.NET通过管道(pipeline)方式组合机器学习过程。整个管道分为以下四个部分:LoadData加载数据TransformData转换数据ChooseAlgorithm选择算法TrainModel训练模型示例建立一个控制台项目。
- 2025 年,人工智能的发展还是「算力至上」吗?
开心的AI频道
人工智能
算力仍是基础,但不再是唯一关键,从算力至上到多维发展算力:不可或缺的基石从市场数据来看,全球智能算力需求呈现爆发式增长,预计到2025年市场规模将达103.4亿美元,年复合增长率高达17.7%。这一增长的背后,显示出AI应用从“小打小闹”走向真实落地。以大模型为例,训练一个模型需要调用约3万个AI芯片,这种规模的算力需求使得算力基础设施建设成为各国竞相布局的战略重点。工信部等六部门联合发布的《算力
- 代码随想录算法训练营第十五天| 二叉树3
Rachela_z
算法
110.平衡二叉树(优先掌握递归)再一次涉及到,什么是高度,什么是深度,可以巩固一下。题目链接/文章讲解/视频讲解:代码随想录状态:要辨别新增函数的位置,self的用法二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数,从上往下数二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数,从下往上数#Definitionforabinarytreenode.#classTreeNode:
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name