Pytorch 单机多GPU运行

一、单机单GPU

1、set current device (gpu id)

# the first methord
CUDA_VISIBLE_DEVICES=gpi_id  python XXX.py

# the second methord
torch.cuda.set_device(gpu_id)

2、put the object(tensor,variable,model…) to GPU memory

# 1、Tensor 
ten1 = torch.FloatTensor(2).cuda()

# 2、Variable
ten1 = torch.FloatTensor(2)

#first variable,then cuda
V1_cpu = autograd.Variable(ten1)
V1 = V1_cpu.cuda()

# first cuda,then variable
ten1_cuda = ten1.cuda()
V2 = autograd.Variable(ten1_cuda)

3、Returns a copy of this object in CPU memory,then you can interact with Numpy

V1_cpu = V1.cpu()
V2_cpu = V2.cpu()

二、单机多GPU

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  • The torch.device contains a device type (‘cpu’ or ‘cuda’) and optional device ordinal for the device type.
model = Model(input_size,output_size)  # init the model

if torch.cuda.device_count() > 1:    # Returns the number of GPUs available
		model = nn.DataParallel(model) 
		
model.to(device)

NB:The batch size should be larger than the number of GPUs used.

the link will help you
DATA PARALLELISM
pytorch 多GPU训练总结(DataParallel的使用)

and you can realize how to select a device in th cross-gpu operations.
CUDA SEMANTICS

你可能感兴趣的:(Pytorch,skill)