[BZOJ4355]Play with sequence 吉司机线段树

定义二元组标记(p,c)表示对区间内元素x
x=max(x+p,c)
标记支持区间加法
tag1<p1,c1>+tag2<p2,c2>=tag<p1+p2,max(c1+p2,c2)>
那么标记就可以下推啦
覆盖操作可以表示成 tag<INF,c>
加法操作可以表示成 tag<p,0>

定义势能函数表示该区间元素不同的个数
区间维护最大值、最大值个数、次大值、和答案(即零的个数)
若区间更新后,新的最大值都是由旧的最大值得来的,那么直接修改即可
否则,递归下去修改,区间势能降低

写起来细节很多

//线段树维护区间最小值、最小值个数、次小值、答案
//标记为二元组Tag表示对元素x = max{x+p,c} 
#include 
#include 
#define INF (1LL<<61)
#define N 600050

#define mid ((l+r)>>1)
#define ls l,mid,t<<1
#define rs mid+1,r,t<<1^1

using namespace std;
typedef long long LL;
int n,m,a[N];
struct Tag{ 
    LL p,c;
    Tag operator+=(Tag cur) {
        Tag tmp;
        tmp.p = max(cur.p + p , -INF);
        tmp.c = max(c + cur.p , cur.c);
        p = tmp.p , c = tmp.c;
    }
}ag[4*N],now;

struct Node{
    LL mx; int tot; LL se; int ans;
}tr[4*N],id;

Node operator +(Node p1,Node p2) {
    Node tmp = id;
    tmp.ans = p1.ans + p2.ans;
    if (p1.mx == p2.mx) {
        tmp.mx = p1.mx;
        tmp.tot = p1.tot + p2.tot;
        tmp.se = min(p1.se,p2.se);
    } else {
        if (p1.mx > p2.mx) swap(p1,p2);
        tmp.mx = p1.mx; 
        tmp.tot = p1.tot;
        tmp.se = min(p1.se,p2.mx);
    }
    return tmp;
}

Node build(int l,int r,int t) {
    ag[t] = (Tag){0LL,-INF};
    return l == r ? tr[t] = (Node){a[l],1,INF,a[l]==0} : tr[t] = build(ls) + build(rs);
}

void push_down(int );
void color(Tag tag,int t) {
    LL a = max( max(tr[t].mx+tag.p , tag.c) , 0LL);
    LL b = max( max(tr[t].se+tag.p , tag.c) , 0LL);
    b = min(b,INF);
    if (tr[t].se == INF) b = INF;
//  if (a >= tr[t].mx) {
//      tr[t].mx = a;
//      tr[t].se = b;
//      if (a == 0) tr[t].ans = tr[t].tot; else tr[t].ans = 0;
//      return ;
//  }
    if (a >= b) {
        push_down(t);
        tr[t] = tr[t<<1] + tr[t<<1^1];
    } else {
        tr[t].mx = a;
        tr[t].se = b;
        if (a == 0) tr[t].ans = tr[t].tot; else tr[t].ans = 0;
    }
}

void push_down(int t) {
    ag[t<<1] += ag[t]; color(ag[t],t<<1);
    ag[t<<1^1] += ag[t]; color(ag[t],t<<1^1);
    ag[t] = (Tag){0,-INF};
}

int ll,rr;
void update(int l,int r,int t) {
    if (l > rr || r < ll) return ;
    if (l >= ll && r <= rr) {
        ag[t] += now;
        color(now,t);
        return ;
    }
    push_down(t);
    update(ls); 
    update(rs);
    tr[t] = tr[t<<1] + tr[t<<1^1];
    return ;
}

int query(int l,int r,int t) {
    if (l > rr || r < ll) return 0;
    if (l >= ll && r <= rr) return tr[t].ans;
    push_down(t);
    int cur = query(ls) + query(rs);
    tr[t] = tr[t<<1] + tr[t<<1^1];
    return cur; 
}

int main() {
//  freopen("1.in","r",stdin);
    scanf("%d%d",&n,&m);
    for (int _=1;_<=n;_++) scanf("%d",&a[_]);
    build(1,n,1);
    while (m--) {
        int cmd=0,c=0; scanf("%d",&cmd);
        if (cmd == 1) {
            scanf("%d%d%d",&ll,&rr,&c);
            now = (Tag){-INF,c};
            update(1,n,1);
        }
        if (cmd == 2) {
            scanf("%d%d%d",&ll,&rr,&c);
            now = (Tag){c,0};
            update(1,n,1);
        }
        if (cmd == 3) {
            scanf("%d%d",&ll,&rr);
            int ans = query(1,n,1);
            printf("%d\n",ans);
        }
    }
    return 0;
} 

你可能感兴趣的:(线段树,雅礼集训)