Spark具有如下几个主要特点:
•运行速度快:使用DAG执行引擎以支持循环数据流与内存计算
•容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过Spark Shell进行交互式编程
•通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件
•运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源
Scala是一门现代的多范式编程语言,运行于Java平台(JVM,Java 虚拟机),并兼容现有的Java程序
Scala的特性:
•Scala具备强大的并发性,支持函数式编程,可以更好地支持分布式系统
•Scala语法简洁,能提供优雅的API
Scala兼容Java,运行速度快,且能融合到Hadoop生态圈中
Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言
Scala的优势是提供了REPL(Read-Eval-Print Loop,交互式解释器),提高程序开发效率
Hadoop存在如下一些缺点:
•表达能力有限
•磁盘IO开销大
•延迟高
任务之间的衔接涉及IO开销
在前一个任务执行完成之前,其他任务就无法开始,难以胜任复杂、多阶段的计算任务
Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了MapReduce所面临的问题
相比于Hadoop MapReduce,Spark主要具有如下优点:
•Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比Hadoop MapReduce更灵活
•Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高
Spark基于DAG的任务调度执行机制,要优于Hadoop MapReduce的迭代执行机制
•使用Hadoop进行迭代计算非常耗资源
•Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据
在实际应用中,大数据处理主要包括以下三个类型:
•复杂的批量数据处理:通常时间跨度在数十分钟到数小时之间
•基于历史数据的交互式查询:通常时间跨度在数十秒到数分钟之间
•基于实时数据流的数据处理:通常时间跨度在数百毫秒到数秒之间当同时存在以上三种场景时,就需要同时部署三种不同的软件
•比如: MapReduce / Impala / Storm
这样做难免会带来一些问题:
•不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换
•不同的软件需要不同的开发和维护团队,带来了较高的使用成本
•比较难以对同一个集群中的各个系统进行统一的资源协调和分配
•Spark的设计遵循“一个软件栈满足不同应用场景”的理念,逐渐形成了一套完整的生态系统
•既能够提供内存计算框架,也可以支持SQL即席查询、实时流式计算、机器学习和图计算等
•Spark可以部署在资源管理器YARN之上,提供一站式的大数据解决方案
•因此,Spark所提供的生态系统足以应对上述三种场景,即同时支持批处理、交互式查询和流数据处理
Spark的生态系统主要包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX 等组件,各个组件的具体功能如下:
* Spark Core:Spark Core包含Spark的基本功能,如内存计算、任务调度、部署模式、故障恢复、存储管理等。Spark建立在统一的抽象RDD之上,使其可以以基本一致的方式应对不同的大数据处理场景;通常所说的Apache Spark,就是指Spark Core;
* Spark SQL:Spark SQL允许开发人员直接处理RDD,同时也可查询Hive、HBase等外部数据源。Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行查询,并进行更复杂的数据分析;
* Spark Streaming:Spark Streaming支持高吞吐量、可容错处理的实时流数据处理,其核心思路是将流式计算分解成一系列短小的批处理作业。Spark Streaming支持多种数据输入源,如Kafka、Flume和TCP套接字等;
* MLlib(机器学习):MLlib提供了常用机器学习算法的实现,包括聚类、分类、回归、协同过滤等,降低了机器学习的门槛,开发人员只要具备一定的理论知识就能进行机器学习的工作;
* GraphX(图计算):GraphX是Spark中用于图计算的API,可认为是Pregel在Spark上的重写及优化,Graphx性能良好,拥有丰富的功能和运算符,能在海量数据上自如地运行复杂的图算法。
•RDD:是Resillient Distributed Dataset(弹性分布式数据集)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型
•DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系
•Executor:是运行在工作节点(WorkerNode)的一个进程,负责运行Task
•Application:用户编写的Spark应用程序
•Task:运行在Executor上的工作单元
•Job:一个Job包含多个RDD及作用于相应RDD上的各种操作
•Stage:是Job的基本调度单位,一个Job会分为多组Task,每组Task被称为Stage,或者也被称为TaskSet,代表了一组关联的、相互之间没有Shuffle依赖关系的任务组成的任务集
总体而言,Spark运行架构具有以下特点:
(1)每个Application都有自己专属的Executor进程,并且该进程在Application运行期间一直驻留。Executor进程以多线程的方式运行Task
(2)Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持通信即可
(3)Task采用了数据本地性和推测执行等优化机制
•许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,共同之处是,不同计算阶段之间会重用中间结果
•目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销
•RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,避免中间数据存储
•一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算
•RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和group by)而创建得到新的RDD
•RDD提供了一组丰富的操作以支持常见的数据运算,分为“动作”(Action)和“转换”(Transformation)两种类型
•RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改(不适合网页爬虫)
•表面上RDD的功能很受限、不够强大,实际上RDD已经被实践证明可以高效地表达许多框架的编程模型(比如MapReduce、SQL、Pregel)
•Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作
Spark采用RDD以后能够实现高效计算的原因主要在于:
(1)高效的容错性
•现有容错机制:数据复制或者记录日志
•RDD:血缘关系、重新计算丢失分区、无需回滚系统、重算过程在不同节点之间并行、只记录粗粒度的操作
(2)中间结果持久化到内存,数据在内存中的多个RDD操作之间进行传递,避免了不必要的读写磁盘开销
(3)存放的数据可以是Java对象,避免了不必要的对象序列化和反序列化
Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage,具体划分方法是:
•在DAG中进行反向解析,遇到宽依赖就断开
•遇到窄依赖就把当前的RDD加入到Stage中
•将窄依赖尽量划分在同一个Stage中,可以实现流水线计算
Stage的类型包括两种:ShuffleMapStage和ResultStage,具体如下:
(1)ShuffleMapStage:不是最终的Stage,在它之后还有其他Stage,所以,它的输出一定需要经过Shuffle过程,并作为后续Stage的输入;这种Stage是以Shuffle为输出边界,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出,其输出可以是另一个Stage的开始;在一个Job里可能有该类型的Stage,也可能没有该类型Stage;
(2)ResultStage:最终的Stage,没有输出,而是直接产生结果或存储。这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。在一个Job里必定有该类型Stage。因此,一个Job含有一个或多个Stage,其中至少含有一个ResultStage。