1.推荐系统相关会议:
RecSys
SIGKDD
WSDM
ICDM
SDM
SIGIR
CIKM
WWW
AAAI
IJCAI
2.相关scholar
(1)Yehuda Koren:
个人主页:Koren's HomePage
主要贡献:Netflix Prize的冠军队成员,是推荐系统领域的大神级人物,现就职于雅虎
代表文献:Matrix Factorization Techniques For Recommender Systems
(2)Hao Ma:
个人主页:HaoMa's HomePage
主要贡献:社会化推荐领域的大牛,提出了许多基于社会化推荐的有效算法,现就职于微软
代表文献:SoRec: Social Recommendation Using Probabilistic Matrix Factorization
(3)郭贵冰:
个人主页:Guibing Guo's HomePage
主要贡献:国内推荐系统大牛,创办了推荐系统开源项目LibRec
代表文献:TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings
(4)Hao Wang
个人主页:HaoWang's HomePage
主要贡献:擅长运用深度学习技术提高推荐系统性能
代表文献:Collaborative deep learning for recommender systems
(5)何向南
个人主页:Xiangnan He's Homepage
主要贡献:运用深度学习技术提高推荐系统性能
代表文献:Neural Collaborative Filtering
(6)Robin Burke
个人主页:rburke's HomePage
主要贡献:混合推荐方向的大牛
代表文献:Hybrid recommender systems: Survey and experiments
(7)项亮
主要贡献:国内推荐系统领域中理论与实践并重的专家,Netflix Prize第二名
代表文献:《推荐系统实践》。
(8)石川
个人主页:shichuan's HomePage
主要贡献:研究方向为异质信息网络上的推荐,提出了加权的异质信息相似度计算等
代表文献:Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks
3.相关paper:
项目链接:hongleizhang/RSPapers
4.相关course
Recommender Systems Specialization
最近,coursea上开放了推荐系统专项课程《Recommender Systems Specialization》。
5相关dataset
(1)MovieLens
适用于传统的推荐任务,提供了3种不同规模的数据,包含用户对电影的评分信息,用户的人口统计学特征以及电影的描述特征。
(2)Filmtrust
适用于社会化推荐任务,规模较小,包含用户对电影的评分信息,同时包含用户间的信任社交信息。
(3)Douban
适用于社会化推荐任务,规模适中,包含用户对电影的评分信息,同时包含用户间的信任社交信息。
(4)Epinions
适用于社会化推荐任务,规模较大,包含用户对电影的评分信息,同时包含用户间的信任社交信息,值得注意的是,该数据集同时还包括不信任关系信息。
(5)Yelp
几乎适用于所有推荐任务,数据规模大,需要手动提取自己需要的信息,包含评价评分信息,用户信息(注册信息、粉丝数量、朋友信息),商品信息(属性信息、位置信息、图像信息),建议信息等。
6.相关code
1、LibRec
java版本开源推荐系统,包含了70多种经典的推荐算法。
2、Surprise
python版本开源推荐系统,包含了多种经典的推荐算法。
3、LibMF
c++版本开源推荐系统,主要实现了基于矩阵分解的推荐算法。
4、Recommender-System
python版本开源推荐系统,包含了多种经典的推荐算法。
5、Neural Collaborative Filtering