[北航矩阵理论A]课程笔记
一、特征值
- 特征根相关:
设任一方阵 \(A = (a_{ij})_{n\times n} \in C^{n\times n}\)- 特征多项式 \(T(\lambda)=|\lambda I- A| = \Pi(\lambda-\lambda_i)\)
- 全体特征根(含重复):\(\lambda(A) = \{\lambda_1,\cdots,\lambda_n\}\),叫做矩阵的 “谱”
- 特征值两个性质:
- \(\Sigma \lambda_i = tr(A)\) 特征根和等于矩阵迹和
- \(\Pi \lambda_i = det(A)\) 特征根积等于行列式值
- \(P可逆,P^{-1}AP = B\),叫做A的一个相似变换,相似变换特征值不变
- 分块求特征值:
- 当矩阵可化为分块上(下)三角时,求主对角线上的矩阵块的特征值,并求并集,保留重复
\[A = \bigg( \begin{matrix} B & O \\ C & D \end{matrix}\bigg)\]
\[A = \bigg( \begin{matrix} B & C \\ O & D \end{matrix}\bigg)\]
- 当矩阵可化为分块上(下)三角时,求主对角线上的矩阵块的特征值,并求并集,保留重复
- 特征根观察法:\(A = (a_{ij})_{n\times n}\)
- 若 \(A\) 中每行和恒为常数 \(a\),则\(\lambda_1 = a \in \lambda(A)\),且 \(X = \bigg(\begin{matrix} 1\\...\\1\end{matrix}\bigg)\)为对应的特征向量
- 若 \(A\) 中每列和恒为常数 \(a\),则...........,但\(X = \bigg(\begin{matrix} 1\\...\\1\end{matrix}\bigg)\)不一定为特征向量
- 平移法则:特征向量不变
- \(A \pm CI\)与 \(A\)有相同的特征向量,且\((A \pm CI)X_i = (\lambda_i \pm C)X_i\)
- 多项式法则:
- \(f(A)\)与\(A\)的特征向量相同,特征值分别为\(f(\lambda),\lambda\)
二、Jordan形
- 三角阵定理:
- 任一方阵 \(A\),存在可逆阵 \(P\) 使A相似于 \(D\) (上三角)
- 接三角阵定理:
- 可选取P使三角形简化为双线上三角,此时\(D\)被称为\(A\)的\(Jordan\)形
- 其中,重复根排在一起 ,\(* = 0/1\);不同根之间 \(* = 0\)
\[ \exists P,P^{-1}AP = D = \left( \begin{matrix} \lambda_1 & * & \cdots & 0\\ \vdots & \lambda_2 & * &\vdots\\ \vdots & \vdots & \ddots &*\\s 0 & 0 & 0 & \lambda_n \\ \end{matrix} \right)_{n\times n} \]
- 其中,重复根排在一起 ,\(* = 0/1\);不同根之间 \(* = 0\)
- 可选取P使三角形简化为双线上三角,此时\(D\)被称为\(A\)的\(Jordan\)形
- 若当块定义:
- 一阶若当块是一个数 \((a)\)
- k阶若当块(k重根\(\lambda\))形为:
\[ J_k(a) = \left( \begin{matrix} a & 1 & \cdots&\cdots & 0\\ \vdots & a & 1 &\cdots &\vdots\\ \vdots & \vdots & \ddots &\ddots &1\\ 0 & 0 & 0 & 0 & a \end{matrix} \right)_{k\times k} \]
- Jordan形定理:
- 任一 :\(A = (a_{ij})_{n\times n} \in C^{n\times n},\exists P\)
- \(A\)共有\(t\)个不同的特征根,每个特征根分别为\(k_i\)重特征根
- 其中\(J_{k_i}^{(\lambda_i)}\)为若当块
\[ p = \left( \begin{matrix} J_{k_1}^{(\lambda_1)} & 0 & \cdots&\cdots & 0\\ \vdots & J_{k_2}^{(\lambda_2)} & 0 &\cdots &\vdots\\ \vdots & \vdots & \ddots &\ddots & 0 \\ 0 & 0 & 0 & 0 & J_{k_t}^{(\lambda_t)} \end{matrix} \right)_{n\times n} \]
- 任一 :\(A = (a_{ij})_{n\times n} \in C^{n\times n},\exists P\)
三、一些基础
- 共轭转置:
- \(A^H = \overline{A}^T\)
- 一些性质:
- \(\overline{AB} = \bar A \bar B\)
- \((AB)^H = B^HA^H\)
- \((ABC)^H = C^HB^HA^H\)
- \((A+B)^H = A^H + B^H\)
- \((kA)^H = \bar k A^H\)
- 几个公式:
- \(r(A^HA) = r(A) = r(AA^H)\)
- \(AX = 0,A^HAX = 0\) 有相同解:\(X^H(A^HAX) = 0 \Rightarrow |AX|^2 = 0\),所以这两个方程解空间维数相同,所以上一行三个矩阵的秩相同
- 向量模长:
- 模公式:\(|X|^2 = X^HX = \Sigma \bar x_i x_i = \Sigma |x_i|^2\)
- 一些性质:
- \(|kX| = |k||X|\)
- 一些公式:
- \(\frac{X}{|X|}\)为\(\vec X\)方向的单位向量
- \(tr(X^HX) = tr(XX^H) = |X|^2\)
- \(A = (a_{ij})_{n\times n} \in C^{n\times n},tr(A^HA) = tr(AA^H) = \sum \sum |a_{ij}|^2\)
- 若 \(tr(AA^H) = 0或tr(A^HA) = 0,则A = 0\)
- 若 \(AA^H = 0或A^HA = 0,则A = 0\)
- \(C^{n\times n}\)内积:
- 定义\((X|Y) = Y^HX\),\(X\),\(Y\)为列向量
- 内积公理
- \(X \neq 0,(X|X)>0\)
- \(\overline{(Y|X)} = (X|Y)\)
- \((kX|Y) = k(X|Y),(X|kY) = \bar k(X|Y)\)
- \((X+Y|Z) = (X|Z) + (Y|Z),(X|Y+Z) = (X|Y) + (X|Z)\)
- 正交:
- 正交则内积为0
- 正交组一定是线性无关组
- 菱形对角线在实空间内正交
- 酉阵
- 定义:
- \(A = A_{n\times p}\)中各列相互正交,称\(A\)为预备半酉阵
- \(B = B_{n\times p}\)中各列相互正交且都为单位向量,即 \(B^HB = I_P\),称\(B\)为半酉阵
- 方阵\(C\)中各列相互正交且都为单位向量,即 \(C^HC = I_P\),称\(C\)为半酉阵
- 常用酉阵等价条件:
- \(A^HA = I_n \Leftrightarrow A^{-1} = A^H\)
- \(A^HA = AA^H = I\)
- 性质:
- 保内积:\((AX,AY) = (X,Y)\)
- 保长:\(|AX|^2 = |X|^2\)
- 保正交:\(X_1 \perp X_2 \perp\cdots\perp X_n \Rightarrow AX_1 \perp AX_2 \perp\cdots\perp AX_n\)
- 定义:
- 镜面阵
\[A = I - \frac{2XX^H}{|X|^2}\]- 性质:
- \(A^H = A\)
- \(A^2 = I\)
- \(A\)为酉阵,\(A^{-1} = A^H\)
- \(AX = -X\)
- \(if X \perp Y,AY = Y\)
- \(\lambda(A) = {-1,1,\cdots,1},det(A) = -1\)
- 结论:
- \((\alpha,\beta)\)为实数,两向量不相等,则存在镜面阵使得 \(A\alpha = \beta\)且
\[A = I - \frac{2(\alpha-\beta)(\alpha-\beta)^H}{(\alpha-\beta)^2}\] - 证明:由镜面公式,取\(X = \alpha - \beta\),使用性质4、5
- \((\alpha,\beta)\)为实数,两向量不相等,则存在镜面阵使得 \(A\alpha = \beta\)且
- 引理(构造镜面阵)
- \(C^{n}\)中任一 \(\alpha = (\alpha_1,\cdots,\alpha_n)^T \neq \vec 0\),令\(\beta = (\lambda|\alpha|,0,\cdots,0)^T\)
\[\lambda = \begin{cases} \frac{\alpha_1}{|\alpha_1|}& \alpha_1 = 0\\ 1& \alpha_1 \neq 0 \end{cases}\]
则存在镜面阵 \(A\) 使得 \(A\alpha = \beta\)
- \(C^{n}\)中任一 \(\alpha = (\alpha_1,\cdots,\alpha_n)^T \neq \vec 0\),令\(\beta = (\lambda|\alpha|,0,\cdots,0)^T\)
- 性质:
- Hermite阵
\[A^H = A,A\in C^{n\times n}\]
斜Hermite:\(A^H = -A\),则\(\frac{A}{i},Ai\)为Hermite- 一些性质:
- 若A为Hermite,则存在酉阵Q使得\(Q^{-1}AQ = D\)为正线上三角,且主对角线元素均为实数
- \(f(X) = X^HAX\)只取实数
- \(\lambda_1 = \frac{X^HAX}{|X|^2}\),其中X为非零特征向量
- \(A = A^H,A \ge 0 \Leftrightarrow \lambda_i \ge 0\)
- \(A = A^H,A > 0 \Leftrightarrow \lambda_i > 0\)
- \(\Rightarrow : X^HAX > 0,\lambda_i = \frac{X^HAX}{|X|^2}>0\)
- \(\Leftarrow : A = A^H \Rightarrow Q^HAQ = D\),D的主对角线为特征值,\(Y^H(Q^HAQ)Y = Y^HDY = \sum\lambda_i|y_i|^2>0\),记\((QY)^HA(QY)>0,X = QY\)
- 若\(A\ge0 \Rightarrow \exists B B^2 =A,B \ge 0,\)
- \(A = A^H \Rightarrow Q^HAQ = D,Q\)为酉阵,D的主对角线为特征值,且均大于等于0,令\(B = Q\sqrt{D}Q^H\),易得B为Hermite,且B相似于\(\sqrt{D}\),B为半正定
- 任一\(A = A_{m\times n},A^HA,AA^H \ge 0\),且都是Hermite
- 任一方阵\(A = A_{n\times n},A + A^H\)是Hermite
- 定理:
- 若\(A = A^H \in C^{n\times n}\),则A恰有n个正交的特征向量$
- \(A = A^H \Rightarrow Q^HAQ = D,Q\)为酉阵,且Q每一列都是特征向量,且正交
- 若\(A = A^H \in C^{n\times n}\),则A恰有n个正交的特征向量$
- 一些性质:
- 正定性:
- 半正定:定义:\(A = A^H \in C^{n\times n},f(X) = X^HAX \ge 0\),记为\(A\ge 0\)
四、QR分解
- 求法:
\(A = A_{n\times p}\),且\(A\)列满秩,如何求 \(A = QR\):- 其中 \(Q = (\epsilon_1,...\epsilon_p)_{n\times p}\) 为半酉阵(或酉阵)
- 对A使用施密特正交化方法:
\[Y_1 = X_1\]
\[Y_2 = X_2 - \frac{(X_2,Y_1)}{|Y_1|^2}Y_1\]
\[Y_3 = X_3 - \frac{(X_3,Y_1)}{|Y_1|^2}Y_1 - \frac{(X_3,Y_2)}{|Y_2|^2}Y_2\]
\[Y_p = X_p - \sum^{p-1}_{j = 0} \frac{(X_n,Y_i)}{|Y_i|^2}Y_i\] - 对 \(Y_i\) 进行单位化,得到 \(\epsilon_i\)
- 对A使用施密特正交化方法:
- R为正线上三角,且主对角线上元素 \(b_i = |Y_i|\)
- \(A = QR \Rightarrow Q^HA = R\)
- 其中 \(Q = (\epsilon_1,...\epsilon_p)_{n\times p}\) 为半酉阵(或酉阵)
- 结论
- 任一方阵\(A \in C^{n\times n}\),存在酉阵\(Q\)与上三角阵\(R\),使得\(A = QR\)
- 取\(A\)第一列,利用镜面阵引理构造镜面阵\(P\)
- \(PA = R,A = P^{-1}R\) 形如 \(A = QR\)
- 任一方阵\(A \in C^{n\times n}\),存在酉阵\(Q\)与上三角阵\(R\),使得\(A = QR\)
五、常见矩阵分解
- 秩1分解:设 \(A = A_{m\times n},r(A) = rank(A) = 1\),即\(A\)各列成比例,记 \(A = \alpha\beta,\alpha = (\alpha_1,\cdots,\alpha_m)^T,\beta = (\beta_1,\cdots,\beta_n)\)
- 当A为方阵时,\(\lambda(A) = {tr(A),0,\cdots,0}\),且\(A\alpha = tr(A)\alpha\),解\(\Sigma b_ix_i = 0\),得到另外的特征向量
- 满秩分解(高低分解):设 \(A = A_{m\times n},r(A) = rank(A) = P(P \ge 1)\Rightarrow A = BC\),其中\(B = B_{m\times p}\),为列满秩\(r(B) = P\) (B叫高阵);\(C = C_{p\times n}\),为行满纸\(r(C) = P\) (C叫低阵)
- 解法:行变法,将A转化为形如D的矩阵,取\(\boldsymbol{D}\)的前\(P\)行为\(C\),取\(\boldsymbol{A}\)中前\(P\)列为\(B\):
\[D = \left( \begin{matrix} 1 & \cdots & 0& * &\cdots & * \\ \vdots & \ddots & \vdots & * &\cdots & * \\ 0 & \cdots &1 & * &\cdots & * \\ 0 & \cdots & 0 & 0 &\cdots & 0 \\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0 &0 &0 &0 &0 &0 & \\ \end{matrix} \right)_{m\times n}\\ \] - 几个性质:
- 高阵\(B\)有左侧逆\(B_L\):\(B_LB = I_P,B_L = (B^HB)^{-1}B^H\)
- 低阵\(C\)有右侧逆\(C_R\):\(CC_R = I_P,C_R = C^H(CC^H)^{-1}\)
- 用法:
- 若 \(BCX = 0\),B为高阵,则 \(B_LBCX = 0 \Rightarrow CX = 0\)
- 若 \(BX = BY\),B为高阵,则 \(B_LBX = B_LBY\)
- 解法:行变法,将A转化为形如D的矩阵,取\(\boldsymbol{D}\)的前\(P\)行为\(C\),取\(\boldsymbol{A}\)中前\(P\)列为\(B\):
六、换位公式
\(A = A_{n\times p},B = B_{p\times n},AB \in C^{n\times n},BA \in C^{p\times p}\)
- 则 \(|\lambda I_n - AB| = \lambda^{n-p}|\lambda I_p - BA|\)
\[令 M = \left( \begin{matrix} AB& O\\ B&O_p\\ \end{matrix} \right)_{n+p},N = \left( \begin{matrix} O_n& O\\ B&BA\\ \end{matrix} \right)_{n+p},P = \left( \begin{matrix} I_n& A\\ O&I_p\\ \end{matrix} \right)\]
\[MP = \left( \begin{matrix} AB& ABA\\ B&BA\\ \end{matrix} \right) = PN,且P^{-1} = \left( \begin{matrix} I_n& -A\\ O&I_p\\ \end{matrix} \right)\]
\[MP = PN \Rightarrow P^{-1}MP = N \Rightarrow |\lambda I - M| = |\lambda I -N| \Rightarrow |\lambda I_n - AB| = \lambda^{n-p}|\lambda I_p - BA|\]
- \(AB\)与\(BA\) 只差 \(n-p\) 个 \(0\) 根
- \(tr(AB) = tr(BA) = \sum {\lambda_i}\)
七、奇异值分解
正奇值:设 \(A = A_{m\times n}, r(A) = P > 0\) ,则 \(A^HA\) 与 \(AA^H\) 恰有\(P\)个正特征根,称\(\sqrt{\lambda_1},\cdots,\sqrt{\lambda_p}\)为\(A\)的正奇异值,记为\(S^+ (A) = \{\sqrt{\lambda_1},\cdots,\sqrt{\lambda_p}\}\)
简奇异值分解:任意 \(A = A_{m \times n},r(A) = r >0\),则有分解 \(A = P\Delta Q^H\),其中 \(\Delta\) 为正线上三角,主对角线上依次为\(\sqrt{\lambda_1},\cdots,\sqrt{\lambda_p}\),且\(P = P_{m\times r},Q = Q_{n\times r}\)都是半酉阵:\(P^HP = Q^HQ = I_r\)
- 已知简奇异值分解 \(A = P\Delta Q^H,则A^H = Q\Delta P^H为A^H\)的简化奇异值分解
- 令\(P = (Y_1,\cdots,Y_r),Q = (X_1,\cdots,X_r)\),可写\(A = \sum \sqrt{\lambda_i}Y_iX_i^H\)
解法:求\(A^HA\)的正特征值,与对应的特征向量,令\(Q = (\frac{X_1}{|X_1|},\cdots,\frac{X_p}{|X_p|}),P = (\frac{AX_1}{|AX_1|},\cdots,\frac{AX_p}{|AX_p|})\)
奇异值分解:将简奇异值分解的\(P,Q\)扩充为酉阵,并将\(\Delta\)扩充为与A同型
八、单纯阵
\(A = A_{n\times n}\)为单阵\(\Leftrightarrow A \sim D,D\)为正线上三角,对角线上为特征值 \(\Leftrightarrow P^{-1}AP = D\),也叫做可对角化
- \(A = A_{n\times n}\)为单阵\(\Leftrightarrow A\) 有 \(n\) 个线性无关的特征向量
- \(A = A_{n\times n}\)为单阵\(\Leftrightarrow\) 每个 \(k\) 重根,恰有\(k\)个线性无关的特征向量
- 若\(n\)阶方阵\(A\)有n个互异根,则\(A\)为单阵
- 若每个 \(k>1\) 重根,恰有 \(k\) 个特征向量,则 \(A\) 为单阵
- \(A = A_{n\times n}\)恰有\(k\)个互异根,且\(\Pi (A-\lambda_i) = 0\),则\(A\)为单阵,反之亦然
- 任意一个\(k>1\)重根\(\lambda_i \in \lambda(A)\)
- 若 \(r(A-\lambda_i I) = n-k\),则\(A\)为单阵,反之亦然
补充定义:若方阵\(A\)与多项式\(f(x)\),\(f(A) = 0\),则称\(f(x)\)为\(A\)的一个0化式,\(A\)叫做\(f(x)\)的一个矩阵根
- 可求出矩阵\(A\)次数最低的0化式,叫做\(A\)的极小式\(m_A(x)\)
Cayley定理:方阵\(A\)的特征多项式\(T(x) = |xI-A|\),使得\(T(A) = 0\)
- 若\(f(x)\)无重根且为\(A\)的0化式,则\(A\)为单阵
谱分解公式:
- 记\(P^{-1}AP = D,D\)为正线上三角,记\(D = \sum \lambda_iE_i\),有:
- \(\sum E_i = I_n\)
- \(E_iE_j = 0, i \ne j\)
- \(E^2_i = E_i\)
- \(E^H_i = E_i\)
- 记\(P^{-1}AP = D \Rightarrow A = PDP^{-1} = \sum \lambda_i(PE_iP^{-1})\)
- 记\(F_i = PE_iP^{-1}\)
- 可写\(A =\sum \lambda_iF_i\)(即A的原谱分解),且:
- \(\sum F_i = I_n\)
- \(F_iF_j = 0, i \ne j\)
- \(F^2_i = F_i\)
- 但\(F^H_i \ne F_i\),当且仅当P为酉阵时成立\(F^H_i = F_i\)
- 单阵谱分解公式:若A为单阵,全体不同根为\(t_1,\cdots,t_k,k \le n\)有:
- \(A =\sum t_iG_i\),这些G叫做谱阵
- \(\sum G_i = I_n\)
- \(G_iG_j = 0, i \ne j\)
- \(G^2_i = G_i\)
- \(A^p =\sum t^p_iG_i\)
- 任意多项式\(f(x)\),有\(f(A) = \sum f(t_i)G_i\)
- 且\(G_i = \frac{(A-t_1)(A-t_2)\cdots(A-t_k)}{(t_i-t_1)(t_i-t_2)\cdots(t_i-t_k)}\),其中分子中不含\((A-t_i)\),分母中不含\((t_i-t_i)\)