LeetCode 刷题记录 40. Combination Sum II

题目:
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

Each number in candidates may only be used once in the combination.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:

Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
本题与LeetCode 刷题记录 39. Combination Sum很类似

两点不同:

  1. Combination Sum中candidates中没有重复的元素,而Combination Sum II中元素可以重复,并且结果集中不能有重复
  2. 每个元素只能用一次,而不是像Combination Sum中元素可以重复使用
    第二点很好处理,在递归函数中每次调用i+1而不是i
    首先我们先用Combination Sum解法1,仅将i变为i+1
class Solution {
public:
    vector> combinationSum2(vector& candidates, int target) {
        
        vector> res;
        vector path;
        DFS(candidates, path, res, target, 0);
        return res;
    }
    void DFS(vector& candidates, vector& path,vector>& res,int gap,int start){
        if(gap < 0) return;
        if(gap == 0){
            res.push_back(path);
            return;
        }
        for(int i = start; i < candidates.size(); ++i){
            path.push_back(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.pop_back();
        }
        
    }
};

LeetCode 刷题记录 40. Combination Sum II_第1张图片
看到结果集会有重复的出现

所以必须要将数组先进行排序处理

class Solution {
public:
    vector> combinationSum2(vector& candidates, int target) {
        
        vector> res;
        vector path;
        sort(candidates.begin(), candidates.end());
        DFS(candidates, path, res, target, 0);
        return res;
    }
    void DFS(vector& candidates, vector& path,vector>& res,int gap,int start){
        if(gap < 0) return;
        if(gap == 0){
            res.push_back(path);
            return;
        }
        for(int i = start; i < candidates.size(); ++i){
            //if(i > start && candidates[i] == candidates[i-1]) continue;
            path.push_back(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.pop_back();
        }
        
    }
};

LeetCode 刷题记录 40. Combination Sum II_第2张图片
最后必须要加上

if(i > start && candidates[i] == candidates[i-1]) continue;

才能实现去重操作
解法1:

递归法:不剪枝
设 candidates数组[1,2,1,1,2,5] target = 5

排序数组[1,1,1,2,2,5]
LeetCode 刷题记录 40. Combination Sum II_第3张图片
我们用cout语句打印出满足去重条件的start i 和i - 1值
LeetCode 刷题记录 40. Combination Sum II_第4张图片
i=start 说明start所处的元素第一次加入path不用判断重复
i>start 说明start所处的元素已经出path,这时候可以判断重复
如:start 3 i 4 i-1 3 ,start为3的元素1已经出path, i = 4 值为2,与i = 3值相等,说明我们已经加过 i = 3的2,无需加i = 4的2

c++:

class Solution {
public:
    vector> combinationSum2(vector& candidates, int target) {
        
        vector> res;
        vector path;
        sort(candidates.begin(), candidates.end());
        DFS(candidates, path, res, target, 0);
        return res;
    }
    void DFS(vector& candidates, vector& path,vector>& res,int gap,int start){
        if(gap < 0) return;
        if(gap == 0){
            res.push_back(path);
            return;
        }
        for(int i = start; i < candidates.size(); ++i){
            if(i > start && candidates[i] == candidates[i-1]) continue;
            path.push_back(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.pop_back();
        }
        
    }
};

java:

class Solution {
    public List> combinationSum2(int[] candidates, int target) {
        List>  res = new ArrayList<>();
        List path = new ArrayList<>();
        Arrays.sort(candidates);
        //DFS(candidates, new ArrayList<>(), res, target, 0);
        DFS(candidates, path, res, target, 0);
        return res;
    }
    private void DFS(int[] candidates,List path,List> res,int gap,int start){
        
        if(gap < 0) return;
        if(gap == 0){
            res.add(new ArrayList<>(path));
            return;
        }
        for(int i = start; i < candidates.length; ++i){
//            cout << candidates[i] << endl;
           // if(gap < candidates[i]) return;
            if(i > start && candidates[i] == candidates[i-1]) continue;
            path.add(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.remove(path.size() - 1);
        }
        
    }
}

python:

class Solution(object):
    def combinationSum2(self, candidates, target):
        """
        :type candidates: List[int]
        :type target: int
        :rtype: List[List[int]]
        """
        res = []
        candidates.sort()
        self.DFS(candidates, [], res, target, 0)
        return res
    def DFS(self, candidates, path, res,gap,start):
        if gap < 0: return
        if gap == 0:
           
            res.append(path)
            return
        for i in xrange(start, len(candidates)):
            if i > start and candidates[i] == candidates[i-1]: continue;
            #if gap < candidates[i]: return
            #path.append(candidates[i])
            self.DFS(candidates, path + [candidates[i]], res, gap - candidates[i], i + 1)
            #self.DFS(candidates, path, res, gap - candidates[i], i)
            #path.pop()
        
    

解法2:
递归法 剪枝
c++:

class Solution {
public:
    vector> combinationSum2(vector& candidates, int target) {
        vector> res;
        vector path;
        sort(candidates.begin(), candidates.end());
        DFS(candidates, path, res, target, 0);
        return res;
    }
     void DFS(vector& candidates, vector& path,vector>& res,int gap,int start){
       // if(gap < 0) return;
        if(gap == 0){
            res.push_back(path);
            return;
        }
        for(int i = start; i < candidates.size(); ++i){
            if(i > start && candidates[i] == candidates[i-1]) continue;
            if(gap < candidates[i]) return;
            path.push_back(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.pop_back();
        }
        
    }
};

java:

class Solution {
    public List> combinationSum2(int[] candidates, int target) {
        List>  res = new ArrayList<>();
        List path = new ArrayList<>();
        Arrays.sort(candidates);
        
        DFS(candidates, path, res, target, 0);
        return res;
    }
    private void DFS(int[] candidates,List path,List> res,int gap,int start){
        
        //if(gap < 0) return;
        if(gap == 0){
            res.add(new ArrayList<>(path));
            return;
        }
        for(int i = start; i < candidates.length; ++i){
//            cout << candidates[i] << endl;
           
            if(i > start && candidates[i] == candidates[i-1]) continue;
            if(gap < candidates[i]) return;
            path.add(candidates[i]);
            DFS(candidates, path, res, gap - candidates[i], i + 1);
            path.remove(path.size() - 1);
        }
        
    }
}

python:

class Solution(object):
    def combinationSum2(self, candidates, target):
        """
        :type candidates: List[int]
        :type target: int
        :rtype: List[List[int]]
        """
        res = []
        candidates.sort()
        self.DFS(candidates, [], res, target, 0)
        return res
    def DFS(self, candidates, path, res,gap,start):
        #if gap < 0: return
        if gap == 0:
           
            res.append(path)
            return
        for i in xrange(start, len(candidates)):
            if i > start and candidates[i] == candidates[i-1]: continue;
            if gap < candidates[i]: return
            #path.append(candidates[i])
            self.DFS(candidates, path + [candidates[i]], res, gap - candidates[i], i + 1)
            #self.DFS(candidates, path, res, gap - candidates[i], i)
            #path.pop()
        
    

你可能感兴趣的:(LeetCode)