转自:https://www.cnblogs.com/wangguchangqing/p/6983680.html
前面几篇文章介绍的是图像的空间域滤波,其对像素的处理都是基于像素的某一邻域进行的。本文介绍的图像的灰度变换则不同,其对像素的计算仅仅依赖于当前像素和灰度变换函数。
灰度变换也被称为图像的点运算(只针对图像的某一像素点)是所有图像处理技术中最简单的技术,其变换形式如下:灰度变换函数描述了输入灰度值和输出灰度值之间变换关系,一旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。可见灰度变换函数的性质就决定了灰度变换所能达到的效果。用于图像灰度变换的函数主要有以下三种:
上图给出了几种常见灰度变换函数的曲线图,根据这几种常见函数的曲线形状,可以知道这几种变换的所能达到的效果。例如,对数变换和幂律变换都能实现图像灰度级的扩展/压缩,另外对数变换还有一个重要的性质,它能压缩图像灰度值变换较大的图像的动态范围(例如,傅立叶变换的频谱显示)。
令r为变换前的灰度,s为变换后的灰度,则线性变换的函数:
在进行图像增强时,上述的线性变换函数用的较多的就是图像反转了,根据上面的参数,图像反转的变换函数为:s=255−ss=255−s。图像反转得到的是图像的负片,能够有效的增强在图像暗区域的白色或者灰色细节。其效果如下:
图像反转的实现是比较简单的,在OpenCV中有对Mat的运算符重载,可以直接Mat r = 255 - img
或者~img
来实现。
对数变换的通用公式是:
float pixels[256];
for (int i = 0; i < 256; i++)
pixels[i] = log(1 + i);
Mat imageLog(image.size(), CV_32FC3);
for (int i = 0; i0; jVec3f>(i, j)[0] = pixels[image.at<Vec3b>(i, j)[0]];
imageLog.at<Vec3f>(i, j)[1] = pixels[image.at<Vec3b>(i, j)[1]];
imageLog.at<Vec3f>(i, j)[2] = pixels[image.at<Vec3b>(i, j)[2]];
}
}
//归一化到0~255
normalize(imageLog, imageLog, 0, 255, CV_MINMAX);
//转换成8bit图像显示
convertScaleAbs(imageLog, imageLog);
这使用的对数函数的底为10。由于灰度变换是灰度值之间的一对一的映射,而灰度值区间通常为[0,255],所以在进行灰度变换时,通常使用查表法。也就是,现将每个灰度值的映射后的结果计算出来,在变换时,通过查表得到变换后的灰度值。执行上面结果得到的结果如下:
左边为原图像,其拍摄环境较暗,无法分辨出很多的细节;右边为变换后的图像,整个图像明亮许多,也能分辨出原图中处于暗区域的狗狗的更多细节。
对数变换,还有一个很重要的性质,能够压缩图像像素的动态范围。例如,在进行傅立叶变换时,得到的频谱的动态范围较大,频谱值的范围通常为[0,106][0,106],甚至更高。这样范围的值,显示器是无法完整的显示如此大范围的灰度值的,因而许多灰度细节会被丢失掉。而将得到的频谱值进行对数变换,可以将其动态范围变换到一个合适区间,这样就能够显示更多的细节。
伽马变换的公式为:
当γ<1γ<1时,γγ的值越小,对图像低灰度值的扩展越明显;当γ>1γ>1时,γγ的值越大,对图像高灰度值部分的扩展越明显。这样就能够显示更多的图像的低灰度或者高灰度细节。
伽马变换主要用于图像的校正,对灰度值过高(图像过亮)或者过低(图像过暗)的图像进行修正,增加图像的对比度,从而改善图像的显示效果。
基于OpenCV的实现:
float pixels[256];
for (int i = 0; i < 256; i++)
pixels[i] = i * i *i;
Mat imageLog(image.size(), CV_32FC3);
for (int i = 0; i0; jVec3f>(i, j)[0] = pixels[image.at<Vec3b>(i, j)[0]];
imageLog.at<Vec3f>(i, j)[1] = pixels[image.at<Vec3b>(i, j)[1]];
imageLog.at<Vec3f>(i, j)[2] = pixels[image.at<Vec3b>(i, j)[2]];
}
}
//归一化到0~255
normalize(imageLog, imageLog, 0, 255, CV_MINMAX);
//转换成8bit图像显示
convertScaleAbs(imageLog, imageLog);
这里选择的参数为c = 1,γ=3γ=3,来扩展图像的高灰度区域,其结果如下:
当选择参数为c = 1,γ=0.4γ=0.4,来扩展图像的低灰度区域,其效果如下:
根据以上的结果,结合伽马变换的函数曲线图,做如下总结:
灰度变换属于点对点的一一变换,在实现的时候,可以利用查表法。也就是实现将[0,255]区间的各个灰度值的变换后的值计算出来,在变换的时候直接根据灰度值进行查表得到变换后的结果。其实现如下:
/////////////////////////////////////////////////////////////////////
//
// 灰度线性变换函数
// 参数:
// src,输入原图像
// dst,输出图像,类型为CV_32F,大小及通道数与原图像相同
// mapping,灰度映射表,可以根据不同的变换函数,提前计算好图像的灰度映射表
//
////////////////////////////////////////////////////////////////////
void gray_trans(const Mat& src, Mat& dst,float* mapping)
{
int channels = src.channels();
if (channels == 1)
{
dst = Mat(src.size(), CV_32FC1);
for (int i = 0; i < src.rows; i++)
{
float* p1 = dst.ptr<float>(i);
const uchar* p2 = src.ptr(i);
for (int j = 0; j < src.cols; j++)
p1[j] = mapping[p2[j]];
}
}
else if (channels == 3)
{
dst = Mat(src.size(), CV_32FC3);
for (int i = 0; i < src.rows; i++)
{
float* p1 = dst.ptr<float>(i);
const uchar* p2 = src.ptr(i);
for (int j = 0; j < src.cols * 3; j+=3)
{
p1[j] = mapping[p2[j]];
p1[j+1] = mapping[p2[j+1]];
p1[j+2] = mapping[p2[j+2]];
}
}
}
}
其调用也比较简单,根据具体的灰度变换函数,填充灰度映射表即可,以伽马变换为例:
float pixels[256];
for (int i = 0; i < 256; i++)
pixels[i] = powf(i, 1.5);
Mat imageLog;
gray_trans(image, imageLog, pixels);
本文主要对图像的几种常见的灰度变换进行了总结。