1.数据集下载 :链接: https://pan.baidu.com/s/1zUxSxwiProvfmAAWjyYb4w 密码: 6eai
代码下载 :链接: https://pan.baidu.com/s/1KyVOEU3p-sfCQIauCXGWIA 密码: tgrh
2.代码的实现:
#添加声明
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#读数据并显示前五行
data = pd.read_csv('creditcard.csv')
data.head()
#假设 class=0表示正常 class=1表示异常 用柱状图显示出样本的分布
count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
count_classes.plot(kind = 'bar')
plt.title('Fraud class histofram')
plt.xlabel('Class')
plt.ylabel('Frequence')
plt.show()
from sklearn.preprocessing import StandardScaler #里面的数据进行操作对Amount的数值进行操作得到normAmount 删除Amount和Time列。由于Amount的数值比较大,对其标准化操作一下。
#reshape中的-1表示 我的数据是1列 多少行你程序自己看着办。
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].reshape(-1,1))
data = data.drop(['Time','Amount'],axis=1)
data.head()
#下采样,0和1的样本数据数量一样少
#本数据集中class=1的样本很少,我们取0的样本数和1的样本数一样多。 组成一个下采样集。
X = data.ix[:,data.columns !='Class'] #除了Class列的值 所有列的值都输入进去
y= data.ix[:,data.columns =='Class']
print(len(y))
print(len(X))
number_records_fraud = len(data[data.Class==1]) #取calss=1的数量
fraud_indices = np.array(data[data.Class==1].index) #将class=1的索引存储到fraud_indices
normal_indices = data[data.Class==0].index
#索引随机选择
random_normal_indices = np.random.choice(normal_indices, number_records_fraud,replace = False)
random_normal_indices =np.array(random_normal_indices)
#将两个样本结合在一起
under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
under_sample_data = data.iloc[under_sample_indices,:]
#下采样数据集中 X_undersample 和y_undersample标签
X_undersample = under_sample_data.ix[:,under_sample_data.columns!='Class']
y_undersample = under_sample_data.ix[:,under_sample_data.columns=='Class']
print(len(under_sample_data[under_sample_data.Class==1])/len(under_sample_data),len(under_sample_data[under_sample_data.Class==1]))
print(len(under_sample_data[under_sample_data.Class==0])/len(under_sample_data),len(under_sample_data[under_sample_data.Class==0]))
print(len(under_sample_data))
#交叉验证 数据切分成训练集和测试集 假设训练集平均分三份 1,2训练 3来验证 | 1,3训练 2验证 | 2,3训练 1验证
from sklearn.cross_validation import train_test_split
#所有数据集切分 7成的训练 3成的测试
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
print(len(X_train))
print(len(X_test))
print(len(y_train))
print(len(y_test))
#y_undersample 下采样数据集切分
X_train_undersample,X_test_undersample,y_train_undersample,y_test_undersample = train_test_split(X_undersample,y_undersample,test_size = 0.3, random_state = 0)
print(len(X_train_undersample))
print(len(X_test_undersample))
print(len(y_train_undersample))
print(len(y_test_undersample))
#模型建立
#recall召回率 作为模型评估标准 Recall = TP/(FP+TP)
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold,cross_val_score #KFold 几倍的交叉验证
from sklearn.metrics import confusion_matrix,recall_score,classification_report
def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(len(y_train_data),5,shuffle=False) #将训练集分成5分 交叉验证
# 惩罚项的惩罚力度
c_param_range = [0.01,0.1,1,10,100]
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
results_table['C_parameter'] = c_param_range
# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
j = 0
for c_param in c_param_range:
print('-------------------------------------------')
print('C parameter: ', c_param)
print('-------------------------------------------')
print('')
recall_accs = []
for iteration, indices in enumerate(fold,start=1):
# L1正则惩罚 + 惩罚发力度
lr = LogisticRegression(C = c_param, penalty = 'l1')
#用训练数据中的训练数据去 训练模型。
lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
# 用训练数据里面的 验证数据来验证
y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)
# 计算召回率
recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
recall_accs.append(recall_acc)
print('Iteration ', iteration,': recall score = ', recall_acc)
# 求平均召回率
results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)
j += 1
print('')
print('Mean recall score ', np.mean(recall_accs))
print('')
best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']
# Finally, we can check which C parameter is the best amongst the chosen.
print('*********************************************************************************')
print('Best model to choose from cross validation is with C parameter = ', best_c)
print('*********************************************************************************')
return best_c
best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample) #用下采样样本训练模型
#混淆矩阵的生成。
def plot_confusion_matrix(cm, classes,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=0)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
import itertools #用测试数据上面跑的结果。
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample = lr.predict(X_test_undersample.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
#图中可以看出来 召唤率为 136/(136+11) = 0.92517召唤率比较高 但是存在很高的误杀率:7263个样本。
# 采用L1正则惩罚 C表示惩罚的力度
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred = lr.predict(X_test.values)
# 计算混淆矩阵
cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
best_c = printing_Kfold_scores(X_train,y_train) #用所有数据训练模型
#误杀率比较低只有 12的样本误杀,但是 召唤率低。
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()
#采用不同的阈值
lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values) #设置不同的阈值的测试结果
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
plt.figure(figsize=(10,10))
#当阈值为0.5和0.6的时候整体结果是比较好的。当阈值为0.1,0.2,0.3的时候召唤率是100%但是误杀率也是100% 当阈值是0.8,0.9的时候召唤率低但是误杀率也低。
j = 1
for i in thresholds:
y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i
plt.subplot(3,3,j)
j += 1
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Threshold >= %s'%i)
plt.show()
#增加负样本数量 像本次的测试数据一样 负样本太少,导致训练的不是很理想。我们要自动生成一些负样本。
import pandas as pd
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
#读取样本数据
credit_cards=pd.read_csv('creditcard.csv')
columns=credit_cards.columns
# The labels are in the last column ('Class'). Simply remove it to obtain features columns
features_columns=columns.delete(len(columns)-1)
features=credit_cards[features_columns]
labels=credit_cards['Class']
features_train, features_test, labels_train, labels_test = train_test_split(features,
labels,
test_size=0.2,
random_state=0)
#用SMOTE生成负样本,数量和正样本差不多。
oversampler=SMOTE(random_state=0)
os_features,os_labels=oversampler.fit_sample(features_train,labels_train)
#生成的负样本的数量
len(os_labels[os_labels==1])
#生成负样本之后在进行训练。 得到的结果比之前要好很多
os_features = pd.DataFrame(os_features)
os_labels = pd.DataFrame(os_labels)
best_c = printing_Kfold_scores(os_features,os_labels)
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(os_features,os_labels.values.ravel())
y_pred = lr.predict(features_test.values)
# Compute confusion matrix
cnf_matrix = confusion_matrix(labels_test,y_pred)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix
, classes=class_names
, title='Confusion matrix')
plt.show()