- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- ChatGPT、DeepSeek、GIS与Python机器学习强强联合!地质灾害风险评估、易发性分析、信息化建库及灾后重建
WangYan2022
DeepSeekChatGPT地下水地质灾害DeepSeekChatGPTGIS灾后重建
在地质灾害频繁肆虐的当下,精准开展风险评价刻不容缓。如今,一门极具创新性的教程震撼登场,它将ChatGPT、DeepSeek等前沿技术与GIS、Python以及机器学习深度交融,为学员打造出前所未有的学习体验,助力大家在地质灾害风险评价领域强势突围,一路领先。前沿技术融合,铸就智能学习核心动力教程最闪耀的亮点之一,便是大胆引入了ChatGPT和DeepSeek技术。它们恰似无所不能的“数据魔法师”
- Python 机器学习 基础 之 学习 基础环境搭建
仙魁XAN
Python机器学习基础+实战案例python学习开发语言机器学习machinelearning
Python机器学习基础之学习基础环境搭建目录Python机器学习基础之学习基础环境搭建一、简单介绍二、什么是机器学习三、python环境的搭建1、Python安装包下载2、这里以下载Python3.10.9为例3、安装Python3.10.94、检验python是否安装成功,win+R快捷打开运行,输入cmd,打开cmd四、Pycharm环境搭建1、下载Pycharm安装包2、安装Pycharm
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- Python多版本环境管理UV
坐吃山猪
Pythonpythonuv开发语言
Python多版本环境管理UV1-参考网址Python虚拟环境UV管理工具-官网Python虚拟环境UV管理工具-快速开始pyproject.toml使用指导2-核心知识点1)python项目维护requirements.txt2)python机器学习环境Anaconda3)python轻量级环境管理uv4)uvx快速上手使用3-上手实操1-安装UV虚拟环境管理工具UV官网安装教程#Windows
- 机器学习专栏博文汇总
python游乐园
机器学习机器学习人工智能合集
本篇汇集了Python游乐园中机器学习专栏博文,会持续更新,需要的小伙伴可以收藏一下Python机器学习实战:基于不同机器学习算法的鸢尾花数据集分析机器学习常见问题:过拟合及其处理方式结构化数据和非结构化数据的区别是什么如何选择合适的机器学习算法来处理非结构化数据可用于文本分析的机器学习算法都有哪些Python机器学习实战:遗传算法机器学习基础:什么是启发式算法机器学习中常用的调节参数的方法(附P
- 00_01 python机器学习_环境搭建
辛 欣
机器学习pythonsklearn
机器学习环境的搭建Windows+Python3Python3下载地址python环境设置安装尽量安装在自定义目录下,方便查找,其他选项都用默认值就行.安装成功后,cmd里输入python校验.下载用于机器学习的虚拟环境的包>python-mpipvirtualenv初始化虚拟环境#进入到自定义要保存环境的位置>cdxxxxxx#.venv是新创建的用于存放机器学习必要包的文件夹,名字可以随意起,
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- python程序员工资高吗?
lmseo5hy
python培训python程序员
据统计数据显示,北京Python平均薪资为18860元,Python不同岗位薪资范围为:Python全栈开发工程师(10k-20K)、Python运维开发工程师(15k-20K)、Python高级开发工程师(15k-30K)、Python大数据工程师(15K-30K)、Python机器学习工程师(15k-30K)、Python架构师(20k-40k)等,相比于Java、PHP、C#等其他的编程语言
- Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习算法链管道网格搜索
Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明目录Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明一、简单介绍二、算法链与管道1、算法链与管道的概念2、使用Pipeline的示例3、关键点说明三、用预处理进行参数选择四、构建管道五、在网格搜索中使用管道1、举例说
- Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习模型评估与改进评估指标与评分召回率
Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明目录Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明一、简单介绍二、评估指标与评分1、牢记最终目标2、二分类指标1)错误类型2)不平衡数据集3)混淆矩阵4)考虑不确定性5)准确率-召回率曲线6)受试者工作特征(ROC)与AUC3、多分类指标4、回归指标5、在模型选择中使用评估指标附录一、参考文献一、简单介绍Py
- 深入探索Python机器学习算法:模型评估
数据攻城小狮子
Python机器学习python机器学习算法sklearn人工智能
深入探索Python机器学习算法:模型评估文章目录深入探索Python机器学习算法:模型评估模型评估1.数据集划分1.1划分原则和方法1.2交叉验证技术1.3不同数据集划分方法的适用性2.评估指标分析2.1分类任务评估指标2.2回归任务评估指标2.3不同评估指标的选择和比较3.模型评估的注意事项3.1避免数据泄露问题3.2评估指标的稳定性和可靠性模型评估1.数据集划分1.1划分原则和方法在机器学习
- 深入解析Python机器学习库Scikit-Learn的应用实例
caihuayuan5
面试题汇总与解析springbootjava后端大数据课程设计
深入解析Python机器学习库Scikit-Learn的应用实例随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其中,Scikit-Learn作为Python中一个重要的机器学习库,包含了许多常用的机器学习算法和工具,可用于数据挖掘、数据分析和预测建模等应用场景。
- python数据预处理技术与实践期末考试_Python机器学习手册:从数据预处理到深度学习...
坂田月半
内容简介O'ReillyMedia,Inc.介绍第1章向量、矩阵和数组1.0简介1.1创建一个向量1.2创建一个矩阵1.3创建一个稀疏矩阵1.4选择元素1.5展示一个矩阵的属性1.6对多个元素同时应用某个操作1.7找到最大值和最小值1.8计算平均值、方差和标准差1.9矩阵变形1.10转置向量或矩阵1.11展开一个矩阵1.12计算矩阵的秩1.13计算行列式1.14获取矩阵的对角线元素1.15计算矩阵
- PYTHON机器学习小项目教程:预测鸢尾花种类
jackispy
python机器学习人工智能
我们将使用经典的鸢尾花数据集来构建一个分类模型,该数据集包含150个样本,每个样本有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。目标是根据这些特征预测鸢尾花的种类(山鸢尾、变色鸢尾或维吉尼亚鸢尾)。一、环境配置首先,确保你已经安装了必要的库。如:pandas、numpy等,命令如下所示pipinstallnumpypandasscikit-learnmatplotlib[-i镜像源网站]二、
- 【Rust】——使用Drop Trait 运行清理代码和Rc<T> 引用计数智能指针
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录使用DropTrait运行清理代码通过std::mem::drop提早丢弃值
- Python机器学习库之scikit-llm使用详解
Rocky006
python开发语言
概要Pythonscikit-llm库是一个用于机器学习的强大工具,它基于scikit-learn库并扩展了一些机器学习算法和功能,可以帮助开发者更轻松地进行机器学习模型的训练和评估。安装可以使用pip工具来安装Pythonscikit-llm库:pip install scikit-llm安装完成后,就可以开始使用scikit-llm库进行机器学习任务了。特性支持多种机器学习算法,如线性回归、逻
- Python机器学习舆情分析项目案例分享
数澜悠客
数字化转型python机器学习开发语言
数据收集与准备1.数据收集多样化数据源:从社交媒体平台(如微博、Twitter)、新闻网站、论坛等多渠道收集数据,以获取更全面的舆情信息。可以使用Python的requests库和网页解析库(如BeautifulSoup)进行网页数据爬取,使用Tweepy库获取Twitter数据。数据标注:对于监督学习,需要对收集到的数据进行标注,标记为积极、消极或中性等类别。可以使用人工标注的方式,也可以利用半
- python 学习路线
Coding Happily
python学习windows
学习顺序《python编程:从入门到实践》《Head-FirstPython》《“笨方法”学python3》《PythonCookbook》《Python机器学习基础教程》《FluentPython》《Python编程》《Python编程:从入门到实践》变量变量命名:仅用小写和下划线。变量本质:指向特定的值。字符串在字符串中使用变量:f’{varies1}{varies2}’更早版本:‘{}{}’
- Python机器学习实战:独热编码
python游乐园
机器学习python机器学习人工智能
独热编码(One-HotEncoding)是一种用于将分类数据转换为适合机器学习算法处理的数值型数据的编码技术。基本概念在机器学习中,很多算法要求输入的数据是数值型的,但实际数据中常常包含分类变量,比如颜色(红、绿、蓝)、性别(男、女)等。独热编码就是为了解决这个问题而设计的,它将每个类别变量转换为一个二进制向量。原理对于一个具有n个不同类别的分类变量,独热编码会创建一个长度为n的二进制向量。在这
- 【Python三方库】Python机器学习开源库之dlib库的简介、安装、使用方法、示例代码、注意事项等详细攻略
I'mAlex
Python三方库python机器学习开源
dlib是一个强大且多功能的库,广泛应用于计算机视觉领域。本文详细介绍了dlib的简介、安装及使用方法,包括面部检测、特征点检测和人脸识别等功能。通过这些基本功能的示例,你可以逐步深入了解并实际应用dlib库,解决更多复杂的计算机视觉问题。掌握dlib库不仅能提升你的编程技能,还能为你以后在计算机视觉领域的研究与应用打下坚实的基础。希望这篇文章能让你更好地理解和使用dlib库,开启你的计算机视觉之
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- scikit-learn基本功能和示例代码
weixin_30777913
深度学习机器学习pythonscikit-learn
scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,提供了丰富的工具和算法,涵盖了数据预处理、模型训练、评估和优化等多个方面。scikit-learn是一个功能强大的机器学习库,涵盖了数据预处理、分类、回归、聚类、降维、模型选择与评估等多个方面。通过上述代码示例,您可以快速上手并使用scikit-learn进行机器学习任务。以下是对scikit-learn主要功能
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S