推荐系统初学者系列(9)-- 非负矩阵分解NMF

七月在线视频推荐:
七月在线
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第1张图片

上一篇:推荐系统初学者系列(8)-- Graph Embedding(网络嵌入表示)做Top-K推荐
下一篇:

目录:

文章目录

    • @[toc] NMF的发展及原理
    • NMF的基本思想
    • 非负矩阵分解NMF的一个示例解释
    • 非负矩阵分解的算法和实现

NMF的发展及原理

著名的科学杂志《Nature》于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果。该文提出了一种新的矩阵分解思想——非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。该论文的发表迅速引起了各个领域中的科学研究人员的重视:一方面,科学研究中的很多大规模数据的分析方法需要通过矩阵形式进行有效处理,而NMF思想则为人类处理大规模数据提供了一种新的途径;另一方面,NMF分解算法相较于传统的一些算法而言,具有实现上的简便性、分解形式和分解结果上的可解释性,以及占用存储空间少等诸多优点。为高效处理这些通过矩阵存放的数据,一个关键的必要步骤便是对矩阵进行分解操作。通过矩阵分解,一方面将描述问题的矩阵的维数进行削减,另一方面也可以对大量的数据进行压缩和概括。
  利用矩阵分解来解决实际问题的分析方法很多,如PCA(主成分分析)、ICA(独立成分分析)、SVD(奇异值分解)、VQ(矢量量化)等。在所有这些方法中,原始的大矩阵V被近似分解为低秩的V=WH形式。这些方法的共同特点是,因子W和H中的元素可为正或负,即使输入的初始矩阵元素是全正的,传统的秩削减算法也不能保证原始数据的非负性。在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。例如图像数据中不可能有负值的像素点;在文档统计中,负值也是无法解释的。

NMF的基本思想

NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵A,NMF算法能够寻找到一个非负矩阵U和一个非负矩阵V,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积。
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第2张图片

由于分解前后的矩阵中仅包含非负的元素,因此,原矩阵A中的一列向量可以解释为对左矩阵U中所有列向量(称为基向量)的加权和,而权重系数为右矩阵V中对应列向量中的元素。这种基于基向量组合的表示形式具有很直观的语义解释,它反映了人类思维中“局部构成整体”的概念。研究指出,非负矩阵分解是个NP问题,可以划为优化问题用迭代方法交替求解U和V。NMF算法提供了基于简单迭代的求解U,V的方法,求解方法具有收敛速度快、左右非负矩阵存储空间小的特点,它能将高维的数据矩阵降维处理,适合处理大规模数据。利用NMF进行文本、图像大规模数据的分析方法,较传统的处理算法速度更快、更便捷。

由于NMF不允许基图像或中间的权重矩阵中出现负值,因此只有相加组合得到的正确基图像才允许,最后通过处理后的重构图像效果是比较满意的(对矩阵非负的限制使得这种分解能够达到用部分表达整体的效果,简单地说就是,整体由部分的叠加而没有了正负抵消 )。

非负矩阵分解NMF的一个示例解释

通俗点说,VQ是用一张完整的图像直接代表源脸部图像;PCA是将几个完整人脸加减压成一张脸;而NMF是取甲的眼睛,乙的鼻子,丙的嘴巴直接拼成一张脸。这样解释虽然细节上略有不妥,但不失其概念上的意义。

通过图1中的面部特征提取例子可领略NMF处理数据的方式。最左边的大矩阵由一系列的小图组成,这些小图是分析数据库中包含的2429个脸部图像的结果,每幅图像由19×19个像素组成。传统方法中这样的小图是一幅完整的人脸图像,但是在NMF方法中,每个小图是通过一组基图像乘以一个权重矩阵而产生的面部特征图,经过这样处理的每幅小图像恰好表示了诸如“鼻子”、“嘴巴”、“眼睛”等人脸局部概念特征,这便大大压缩了存放的图像数据量。左边的大矩阵由每幅小图像的19列一起组成矩阵的一列,那样它就是19×19=361行,2429列。这个例子中,NMF方法用基图像来代表眼、眉毛、鼻子、嘴、耳朵、胡子等,它们一起组成了数据库中的脸。这样给人最先的直觉就是它很好地压缩了数据。事实上Lee和Seung在他们的论文中更深入地指出,与人类识别事物的过程相似,NMF也是一种优化的机制,近似于我们的脑分析和存储人脸数据的过程。这个例子中,原图像表示这些局部特征的加权组合,这与人类思维中“局部构成整体”的概念是相吻合的。因此,NMF算法似乎体现了一种智能行为。

推荐系统初学者系列(9)-- 非负矩阵分解NMF_第3张图片

上图的第一个方块为矩阵W,组成的图像。其中每一个小格为W的一列的1919个元素重构而成的1919的矩阵图像。第二个方块为H矩阵,其中红色表示负数,灰黑表示正数, 颜色程度表示大小。右边的图像只是V矩阵的一列的19*19个元素组成的一张原始脸。

非负矩阵分解的算法和实现

非负矩阵分解的具体算法
输入参数:X,R,MAXITER,其中X为被分解的矩阵,R为降阶后B的秩,MAXITER为迭代次数
输出参数:B,H
初始化矩阵B,H为非负数,同时对B的每一列数据归一化
for i=1:MAXITER
    a:更新H矩阵一行元素:H(i,j)=H(i,j)*(B'*X)(i,j)/(B'*B*H)(i,j)
    b:更新B的一列元素:B(k,j)=B(k,j)*(X*H')(k,j)/(B*H*H')(k,j);
    c:重新对B进行列归一化
end

NMF求解问题实际上是一个最优化问题,利用乘性迭代的方法求解和,非负矩阵分解是一个NP问题。NMF问题的目标函数有很多种,应用最广泛的就是欧几里得距离和KL散度。

关于更新法则,Daniel D. Lee和H. Sebastian Seung的文章《Algorithms for Non-negative Matrix Factorization》有详细的公式推导证明。由于W与H的乘积是对V的近似估计,所以评价分解好坏的标准便是两者之间的差异。文中在不同的代价函数下提出了不同的更新法则,包括乘性更新法则与加性更新法则。文中还通过构造辅助函数对迭代算法的收敛性进行了证明。

推荐系统初学者系列(9)-- 非负矩阵分解NMF_第4张图片
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第5张图片
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第6张图片
写法二:
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第7张图片
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第8张图片
推荐系统初学者系列(9)-- 非负矩阵分解NMF_第9张图片

你可能感兴趣的:(推荐系统)