Python刷题--Tree(最大深度/叶节点数/非叶节点数/第K层节点数/平衡二叉树/完全二叉树/镜像树/LCA公共祖先/BFS/DFS/二叉堆/堆排序/递归,非递归实现前序中序后序遍历)

Python刷题--Tree(最大深度/叶节点数/非叶节点数/第K层节点数/平衡二叉树/完全二叉树/镜像树/LCA公共祖先/BFS/DFS/二叉堆/堆排序/递归,非递归实现前序中序后序遍历)_第1张图片

堆排序小灰
堆排序

# -*- coding:UTF-8 -*-
import collections


class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None


def maxDepth(root):
    if root is None:
        return 0
    left = maxDepth(root.left)
    right = maxDepth(root.right)
    return max(left, right) + 1


def minDepth(root):
    if root is None:
        return 0
    leftDepth = minDepth(root.left)
    rightDepth = minDepth(root.right)
    if root.left is None or root.right is None:
        return max(leftDepth, rightDepth) + 1
    return min(leftDepth, rightDepth) + 1


def numOfTreeNode(root):
    if root is None:
        return 0
    left = numOfTreeNode(root.left)
    right = numOfTreeNode(root.right)
    return left + right + 1


def numsOfNoChildNode(root):
    if root is None:
        return 0
    if (root.left is None and root.right is None):
        return 1
    return numsOfNoChildNode(root.left) + numsOfNoChildNode(root.right)


def numsOfkLevelTreeNode(root, k):
    if root is None or k < 1:
        return 0
    if k == 1:
        return 1
    numsLeft = numsOfkLevelTreeNode(root.left, k - 1)
    numsRight = numsOfkLevelTreeNode(root.right, k - 1)
    return numsLeft + numsRight


def isBalanced(root):
    return maxDeath2(root) != -1


def maxDeath2(root):
    if root is None:
        return 0
    left = maxDeath2(root.left)
    right = maxDeath2(root.right)
    if (left == -1 or right == -1 or abs(left - right) > 1):
        return -1
    return max(left, right) + 1


def isCompleteTreeNode(root):
    if root is None:
        return False
    queue = collections.deque()
    queue.append(root)
    result = True
    hasNoChild = False
    while (queue):
        current = queue.popleft()
        if (hasNoChild):
            if (current.left != None or current.right != None):
                result = False
                break
        else:
            if (current.left != None and current.right != None):
                queue.append(current.left)
                queue.append(current.right)
            elif (current.left != None and current.right == None):
                queue.append(current.left)
                hasNoChild = True
            elif (current.left == None and current.right != None):
                result = False
                break
            else:
                hasNoChild = True
    return result


def isSameTreeNode(t1, t2):
    if (t1 is None and t2 is None):
        return True
    elif (t1 is None or t2 is None):
        return False
    if (t1.val != t2.val):
        return False
    left = isSameTreeNode(t1.left, t2.left)
    right = isSameTreeNode(t1.right, t2.right)
    return left and right


def mirrorTreeNode(root):
    if root is None:
        return 0
    left = mirrorTreeNode(root.left)
    right = mirrorTreeNode(root.right)
    root.left = right
    root.right = left
    return root


# def getLastCommonParent(root, t1, t2):
#     if (findNode(root.left, t1)):
#         if (findNode(root.right, t2)):
#             return root
#         else:
#             return getLastCommonParent(root.left, t1, t2)
#     else:
#         if (findNode(root.left, t2)):
#             return root
#         else:
#             return getLastCommonParent(root.right, t1, t2)
#
#
# def findNode(root, node):
#     if (root is None or node is None):
#         return False
#     if (root == node):
#         return True
#     found = findNode(root.left, node)
#     if (not found):
#         found = findNode(root.right, node)
#     return found

"""
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______6______
       /              \
    ___2__          ___8__
   /      \        /      \
   0      _4       7       9
         /  \
         3   5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

"""
"""注意这里是一个二叉搜索树,根结点的右子树上所有的点的值都比根结点大,左子树上所有点的值都比根结点的值小
因此分为四种情况,
1、如果两个节点一个值比节点大,一个小,那么二者的公共节点肯定是根结点,
2、如果两个节点中有一个与根结点的值同样大,那么二者的公共节点同样是根结点
3、如果两个节点的值都比根结点小,那么二者的公共节点出现在根结点的左子树中,递归查询
4、如果两个节点的值都比根结点大,那么二者的公共节点出现在根结点的右子树中,递归查询
"""


def lowestCommonAncestor(self, root, p, q):
    """
    :type root: TreeNode
    :type p: TreeNode
    :type q: TreeNode
    :rtype: TreeNode
    """
    if (p.val - root.val) * (q.val - root.val) <= 0:
        return root
    if p.val < root.val and q.val < root.val:
        return self.lowestCommonAncestor(root.left, p, q)
    if p.val > root.val and q.val > root.val:
        return self.lowestCommonAncestor(root.right, p, q)


# 广度优先遍历算法
def level_queue(root):
    if root is None:
        return
    my_queue = collections.deque()
    node = root
    my_queue.append(node)
    while my_queue:
        node = my_queue.popleft()
        print(node.val)
        if node.left is not None:
            my_queue.append(node.left)
        if node.right is not None:
            my_queue.append(node.right)


# 深度优先遍历算法
def depth_tree(tree_node):
    if tree_node is not None:
        print(tree_node.val)
        if tree_node.left is not None:
            depth_tree(tree_node.left)
        if tree_node.right is not None:
            depth_tree(tree_node.right)


"""
二叉堆本质上是一种完全二叉树,它分为两个类型:
1.最大堆
2.最小堆
对于二叉堆,如下有几种操作:
1.插入节点
2.删除节点
3.构建二叉堆 : 本质上就是让所有非叶子节点依次下沉。


           1 
        /     \
       3       2
      / \     / \
     6   5   7   8
    /\
   9  10
   
==> 1 3 2 6 5 7 8 9 10
假设父节点的下标是parent,那么它的左孩子下标就是 2*parent+1;它的右孩子下标就是  2*parent+2 。

举例 小根堆:
"""


def unAdjust(array):
    childIndex = len(array) - 1
    parentIndex = childIndex / 2
    temp = array[childIndex]
    while (childIndex > 0 and temp < array[parentIndex]):
        array[childIndex] = array[parentIndex]
        childIndex = parentIndex
        parentIndex = parentIndex / 2
    array[parentIndex] = temp


def downAdjust(array, parentIndex, length):
    temp = array[parentIndex]
    childIndex = 2 * parentIndex + 1
    while (childIndex < length):
        if childIndex + 1 < length and array[childIndex + 1] < array[childIndex]:
            childIndex += 1
        if temp <= array[childIndex]:
            break
        array[parentIndex] = array[childIndex]
        parentIndex = childIndex
        childIndex = 2 * childIndex + 1
    array[parentIndex] = temp


def buildHeap(array):
    for i in range(len(array) / 2)[::-1]:
        downAdjust(array, i, len(array))


"""
堆排序算法的步骤:
1. 把无序数组构建成二叉堆。
2. 循环删除堆顶元素,移到集合尾部,调节堆产生新的堆顶。

大根堆
"""


def downAdjustBig(array, parentIndex, length):
    temp = array[parentIndex]
    childIndex = 2 * parentIndex + 1
    while (childIndex < length):
        if childIndex + 1 < length and array[childIndex + 1] > array[childIndex]:
            childIndex += 1
        if temp >= array[childIndex]:
            break
        array[parentIndex] = array[childIndex]
        parentIndex = childIndex
        childIndex = 2 * childIndex + 1
    array[parentIndex] = temp


def heapSort(array):
    # 1.构建二叉堆
    for i in range(len(array) / 2)[::-1]:
        downAdjustBig(array, i, len(array))
    print(array)

    # 2.循环删除堆顶元素,移到集合尾部,调节堆产生新的堆顶
    for i in range(len(array))[::-1]:
        temp = array[i]
        array[i] = array[0]
        array[0] = temp
        downAdjustBig(array, 0, i)


def inorderTraversal_recur(root):
    """
    :type root: TreeNode
    :rtype: List[int]
    """
    if not root:
        return []
    return inorderTraversal_recur(root.left) + [root.val] + inorderTraversal_recur(root.right)


def preorderTraversal_recur(root):  ##前序遍历
    """
    :type root: TreeNode
    :rtype: List[int]
    """
    if not root:
        return []
    return [root.val] + preorderTraversal_recur(root.left) + preorderTraversal_recur(root.right)


def postorderTraversal_recur(root):  ##后序遍历
    """
    :type root: TreeNode
    :rtype: List[int]
    """
    if not root:
        return []
    return postorderTraversal_recur(root.left) + postorderTraversal_recur(root.right) + [root.val]


"""
当前结点curr不为None时,每一次循环将当前结点curr入栈;
当前结点curr为None时,则出栈一个结点,且打印出栈结点的value值。
整个循环在stack和curr皆为None的时候结束。"""


def inorderTraversal(self, root):
    stack = []
    sol = []
    curr = root
    while stack or curr:
        if curr:
            stack.append(curr)
            curr = curr.left
        else:
            curr = stack.pop()
            sol.append(curr.val)
            curr = curr.right
    return sol


"""
由于前序遍历的顺序是中左右,所以我们每次先打印当前结点curr,并将右子结点push到栈中,然后将左子结点设为当前结点。
入栈和出栈条件(当前结点curr不为None时,每一次循环将当前结点curr入栈;
当前结点curr为None时,则出栈一个结点)以及循环结束条件
(整个循环在stack和curr皆为None的时候结束)与中序遍历一模一样。
"""


def preorderTraversal(self, root):  ## 前序遍历
    stack = []
    sol = []
    curr = root
    while stack or curr:
        if curr:
            sol.append(curr.val)
            stack.append(curr.right)
            curr = curr.left
        else:
            curr = stack.pop()
    return sol


"""
代码的主体部分基本就是.right和.left交换了顺序,
且后序遍历在最后输出的时候进行了反向(因为要从 中右左 变为 左右中 )
"""


def postorderTraversal(self, root):  ## 后序遍历
    stack = []
    sol = []
    curr = root
    while stack or curr:
        if curr:
            sol.append(curr.val)
            stack.append(curr.left)
            curr = curr.right
        else:
            curr = stack.pop()
    return sol[::-1]


# 前序 中序 构建树
def getTreePreMid(pre, mid):
    if len(pre) == 0:
        return None
    if len(pre) == 1:
        return TreeNode(pre[0])
    root = TreeNode(pre[0])
    root_index = mid.index(pre[0])
    root.left = getTreePreMid(pre[1:root_index + 1], mid[:root_index])
    root.right = getTreePreMid(pre[root_index + 1:], mid[root_index + 1:])
    return root


# 前序 中序 构建后序
def getAfterFromPreMid(pre, mid, res):
    if len(pre) == 0:
        return
    if len(pre) == 1:
        res.append(pre[0])
        return
    root = pre[0]
    root_index = mid.index(root)
    getAfterFromPreMid(pre[1:root_index + 1], mid[:root_index], res)
    getAfterFromPreMid(pre[root_index + 1:], mid[root_index + 1:], res)
    res.append(root)
    return res


if __name__ == '__main__':
    """
             0
           /   \
          1     3
         / \
        4   5
       / \
      6
     / \
    8   7
    """
    root = TreeNode(0)
    a = TreeNode(1)
    b = TreeNode(3)
    c = TreeNode(4)
    d = TreeNode(5)
    e = TreeNode(6)
    f = TreeNode(7)
    g = TreeNode(8)

    root.left = a
    root.right = b
    a.left = c
    a.right = d
    c.left = e
    e.right = f
    e.left = g

    # print maxDepth(root)
    # print minDepth(root)
    # print(numOfTreeNode(root))
    # print(numsOfNoChildNode(root))
    # print(numsOfkLevelTreeNode(root, 4))
    # print(isBalanced(root))
    # print(maxDeath2(root))
    # print(isCompleteTreeNode(c))
    # print getLastCommonParent(root, a, b)
    print("##" * 20)
    # level_queue(root)
    # print depth_tree(root)

    array = [7, 1, 3, 10, 5, 2, 8, 9, 6]
    buildHeap(array)
    print(array)

    print("##" * 20)
    arr = [1, 3, 2, 6, 5, 7, 8, 9, 10, 0]
    heapSort(arr)
    print(arr)

    print("--" * 20)
    res = inorderTraversal(root)
    print(res)

你可能感兴趣的:(Python机器学习)