- YOLOv8改进 更换轻量级网络结构
学yolo的小白
UpgradeYOLOv8进阶YOLO目标检测深度学习
一、GhostNet论文论文地址:1911.11907.pdf(arxiv.org)二、GhostNet结构GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型
- 图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解
牙牙要健康
深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解前言EfficientNet_V2讲解自适应正则化的渐进学习(ProgressiveLearningwithadaptiveRegularization)EfficientNet_V2的模
- 3.2 ThunderNet思考
深度学习模型优化
1设计思想ThunderNet的优化目标是二阶段检测器中计算开销大的结构。在backbone部分,设计了轻量级网络SNet;在detection部分,借鉴Light-HeadR-CNN的思路,并进一步压缩RPN和R-CNN子网络。为了避免性能的衰退,设计了2个高效的结构CEM和SAM来改善性能。2网络架构图1ThunderNet网络架构ThunderNet的输入是分辨率的图像。Backbone部分
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解前言EfficientNet_V1讲解问题辨析(ProblemFormulation)缩放尺寸(ScalingDimensions)复合缩放(CompoundScaling)Efficie
- Coap在Andorid中的简单应用
秦汉春秋
AndroidJavacaliforniumcoap广播
Andlink设备使用了Coap来进行配网和一定的数据交互,因此记录一下。Coap协议Coap可以简单理解为是为了在物联网场景下实现web功能而产生的一种轻量级网络协议;主要特点有使用UDP方式传输以及基于REST等。coap协议的服务地址和http的url类似:coap://192.168.52.101:5683/qlink/request也同样接收POST/GET/PUT/DELETE等请求;
- 暗光增强——Zero-DCE网络推理测试
佐咖
暗光增强增强现实
目录一、Zero-DCE方法1.1网络优点1.2网络适用场景1.3网络不适用场景二、源码包三、测试四、测试结果五、推理速度六、总结一、Zero-DCE方法Zero-DCE(Zero-ReferenceDeepCurveEstimation)是一种用于低光照增强的网络。1.1网络优点无需参考数据:Zero-DCE不需要任何配对或非配对的数据进行训练,这避免了过拟合的风险。轻量级网络:Zero-DCE
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V2模型算法详解前言ShuffleNet_V2讲解四条实用指导思想G1:相等的通道宽度可以降低存储访问成本G2:大量的分组卷积数量会增加存储访问G3:网络碎片化会降低并行度G4:元素级操作是不可忽略的Shuffl
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】ShuffleNet_V1模型算法详解前言ShuffleNet_V1讲解groupconvolution(分组卷积)ChannelShuffle(通道混洗)ShuffleNetUint(ShuffleNet基础单元)ShuffleNe
- 【目标检测实验系列】YOLOv5创新点改进:融合高效轻量级网络结构GSConv,减轻模型复杂度的同时保持检测精度!(内含源代码,超详细改进代码流程)
弗兰随风小欢
目标检测实验系列目标检测YOLO人工智能YOLOv5GSConvSCI论文计算机视觉
自我介绍:本人硕士期间全程放养,目前成果:一篇北大核心CSCD录用,两篇中科院三区已见刊,一篇中科院三区在投。如何找创新点,如何放养过程厚积薄发,如何写中英论文,找期刊等等。本人后续会以自己实战经验详细写出来,还请大家能够点个关注和赞,收藏一下,谢谢大家1.文章主要内容本篇博客主要涉及将GSConv融合到YOLOv5模型中。通过GSConv替换普通的卷积结构,减轻模型复杂度的同时保持检测精度。(通
- CoordAttention解读
周先森爱吃素
论文解读CoordAttention
简介在轻量级网络上的研究表明,通道注意力会给模型带来比较显著的性能提升,但是通道注意力通常会忽略对生成空间选择性注意力图非常重要的位置信息。因此,新加坡国立大学的QibinHou等人提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为coordinateattention(简称CoordAttention,下文也称CA),该论文已被CVPR2021收录。不同于通道
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V3模型算法详解前言MobleNet_V3讲解SE模块(SqueezeExcitation)重新设计激活函数反向残差结构(InvertedResiduals)重新设计耗时层结构MobleNet_V3模型结构Mob
- 图像识别经典轻量级网络模型总结梳理、原理解析与优劣对比分析
Together_CZ
网络深度学习人工智能
在前面的很多博文中,我们不止一次提到过,在实际业务项目开发过程中,我们会经常使用到轻量级的网络模型,本文主要是总结梳理前面经常使用到的一些轻量级的图像识别模型。【MobileNetv1】MobileNetv1是一种轻量级的卷积神经网络(CNN)架构,由Google团队在2017年提出。它的设计初衷是为了在移动设备上实现高性能的图像识别和物体检测任务,同时降低模型的计算量和内存占用。MobileNe
- 轻量级网络结构的目标检测算法——Yolov8介绍
LittroInno
目标跟踪人工智能计算机视觉yolov8
1.Yolov8算法概述Yolov8是一种目标检测算法,它通过独特的双路径预测和紧密的连接的卷积网络进行目标检测。该算法采用了轻量级网络结构,同时保持了较高的性能,因此具有高效的特点。此外,Yolov8还采用了级联和金字塔的思想,使算法能够处理不同大小的目标。在Yolov8中,目标检测任务被分解为两个独立的子任务,即分类和定位。每个子任务都有自己的网络路径,这使得算法能够更好地处理不同大小的目标。
- 阅读笔记 | Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI
一条独龙
笔记笔记edge人工智能
内容概要这篇是一篇综述性文章,主要关于云计算、边缘计算以及边云协同计算在人工智能方面的进展。论文的主要内容如下:云计算AI:讨论了用于云计算的CPU、GPU、TPU和DPU等硬件。介绍了计算机视觉、自然语言处理和网络服务等领域基于云计算的AI模型。边缘计算AI:概述了用于边缘计算的VPU、边缘TPU、移动GPU和神经处理单元等硬件。探讨了轻量级网络架构设计、模型压缩等技术来满足边缘计算的限制。边缘
- Android使用Okhttp进行数据交互
全栈开发Dream
前言在遇到Android数据交互的情况时,思考过采取什么方式,在经过一段时间的学习,最终采取Okhttp这一个轻量级网络框架。1、工具类实现publicclassOkHttpUtil{publicfinalstaticStringTAG="OkHttpUtil";publicfinalstaticintCONNECT_TIMEOUT=60;publicfinalstaticintREAD_TIME
- 轻量级网络之mobilenet v1
GEETEST极验
论文分享萝卜兔编辑整理卷积神经网络广泛应用在各种任务,比如图像分类、目标检测等,性能也越来越好,但都趋向于使用更深更复杂的结构来提升性能而不太关注计算代价,使得将这些模型直接部署在移动设备困难重重。本文针对传统卷积计算量大的缺点,对传统卷积模块进行了改进,该结构更高效,为在移动设备上部署带来了可能。RooflineModel在介绍具体的原理之前,我们先来与模型计算性能相关的几个概念:(1)计算量:
- CGNet: A Light-weight Context Guided Network for Semantic Segmentation
顾北向南
论文地址:https://arxiv.org/pdf/1811.08201代码地址:https://github.com/wutianyiRosun/CGNet1.摘要本文提出了一种新颖的上下文引导网络(CGNet),它是一种用于移动设备语义分割的轻量级网络。我们首先提出了ContextGuided(CG)块,它学习了局部特征和周围环境的联合特征,并进一步改善了与全局背景的联合特征。基于CG块,我
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解
牙牙要健康
图像分类轻量级网络深度学习深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解前言MobleNet_V2讲解反向残差结构(InvertedResiduals)兴趣流形(Manifoldofinterest)线性瓶颈层(LinearBottlenecks)MobleNet_V
- 图像分类(七) 全面解读复现ShuffleNetV1-V2
小酒馆燃着灯
图像分类机器学习深度学习分类人工智能python机器学习深度学习算法
ShuffleNetV1前言前面我们学了MobileNetV1-3,从这篇开始我们学习ShuffleNet系列。ShuffleNet是Face++(旷视)在2017年发布的一个高效率可以运行在手机等移动设备的网络结构,论文发表在CVRP2018上。这个新的轻量级网络使用了两个新的操作:pointwisegroupconvolution和channelshuffle,在保持精度的同时大大降低计算成本
- 轻量级网络--MobileNet V1、V2、V3(学习记录;完善ing)
Colinnnn2
论文阅读网络深度学习神经网络
MobileNet目录前言研究背景研究成果论文结构摘要论文精读1.MobileNetArchitecture1.1卷积块特点1.2深度可分离卷积1.3两者对比2.MobileNet超参数2.1宽度超参数2.2分辨率超参数3.MobileNetV23.1线性瓶颈层(LinearBottleneck)3.2逆残差结构(Invertedresiduals)3.3MobileNetV2网络结构3.4ReL
- 聊聊神经网络结构以及计算量和内存使用
Henry_zhangs
关于深度学习的smartpower神经网络人工智能深度学习
目录1.前言2.torchsummary3.torchstat3.1Conv层计算FLOPs和MAC3.2ReLU计算FLOPs和MAC3.3MaxPool计算FLOPs和MAC3.4fc计算FLOPs和MAC4.summary1.前言最近在看轻量级网络的paper,因此来简单聊聊神经网络计算量和使用内存的情况这里只计算两个参数FLOPs和MACFLOPs是神经网络执行一次前向传播的计算量,也就是
- 深度学习之基于YoloV5-Deepsort人物识别与追踪系统
雅致教育
深度学习python计算机毕业设计深度学习YOLO人工智能
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 YoloV5-Deepsort是一种基于深度学习的人物识别与追踪系统,具有较高的准确率和实时性能。YoloV5是一种目标检测算法,可以快速识别图像或视频中的不同目标。它采用了轻量级网络结构,并通过从预训练模型中进行微调来提高检测精度。相比于之前的版本,YoloV5在保持准确
- MobileNetV3
nice-wyh
人工智能机器学习
相对重量级网络而言,轻量级网络的特点是参数少、计算量小、推理时间短。更适用于存储空间和功耗受限的场景,例如移动端嵌入式设备等边缘计算设备。因此轻量级网络受到了广泛的关注,其中MobileNet可谓是其中的佼佼者。MobileNetV3经过了V1和V2前两代的积累,性能和速度都表现优异,MobileNetV3参数是由NAS(networkarchitecturesearch)搜索获取的,又继承的V1
- opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox
aworkholic
OpenCVopencv实例源码演示opencvdnn目标检测yolox
文章目录0、前言1、网络介绍1.1、输入1.2、Backbone主干网络1.3、Neck1.4、Prediction预测输出1.4.1、DecoupledHead解耦头1.4.2、Anchor-Free1.4.3、标签分配1.4.4、Loss计算1.5、Yolox-s、l、m、x系列1.6、轻量级网络研究1.6.1、轻量级网络1.6.2、数据增强的优缺点1.7、Yolox的实现成果1.7.1、精度
- SqueezeNet 一维,二维网络复现 pytorch 小白易懂版
浩浩的科研笔记
Pytorch深度学习一维网络网络pytorch人工智能
SqueezeNet时隔一年我又开始复现神经网络的经典模型,这次主要复的是轻量级网络全家桶,轻量级神经网络旨在使用更小的参数量,无限的接近大模型的准确率,降低处理时间和运算量,这次要复现的是轻量级网络的非常经典的一个模型SqueezeNet,它由美国加州大学伯克利分校的研究团队开发,并于2016年发布。文章链接:https://arxiv.org/pdf/1602.07360.pdf?source
- iOS AFNetworking 取消网络请求
忆江南的博客
IOS开发学习点滴AFNetworking
AFNetworking是我们常用的轻量级网络请求,文章的前提是你已经对AFNetworking有了基本的掌握。不太了解的,请链接iOS使用AFNetworking。一:唠唠叨叨。AFNetworking是建立在NSURLConnection和NSOperation等类库的基础之上的,取消的网络的请求的操作也就变得很简单。但AFNetworking又没有直接的给出我们取消的方式,这就需要我们添加。
- CV Code | 本周新出计算机视觉开源代码汇总(语义分割、目标检测、超分辨率、网络结构设计、训练策略等)...
我爱计算机视觉
点击我爱计算机视觉标星,更快获取CVML新技术CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像增广、医学图像分割、图像恢复、目标检测、语义分割、超分辨率、显著目标检测、轻量级网络结构设计、网络规范化、标注工具等,其中有多篇来自CVPR2019与ICML2019的论文代码。希望对你有帮助~ICML2019mixup图像增广,噪声标签建模改进网络训练Unsupervisedlabelnoi
- 轻量级网络IP扫描器WatchYourLAN
杨浦老苏
群晖docker网络
什么是WatchYourLAN?WatchYourLAN是一款带有WebGUI的轻量级网络IP扫描器。支持使用不同的主题和色彩模式进行个性化设置。准备工作扫描网络,首先要找到对应的网络接口,一般常见的包括eth0、lo、docker0等,可以在SSH客户端命令行,执行下面的命令#获取网络接口ifconfig-a但是目前WatchYourLAN还不支持docker0,因为arp-scan无法正确使用
- 使用 PyTorch 的计算机视觉简介 (6/6)
无水先生
深度学习深度学习和图像处理人工智能pytorch计算机视觉人工智能
一、说明本文主要介绍CNN中在pytorch的实现,其中MobileNet网络,数据集来源,以及训练过程,模型生成和存储,模型调入等。二、轻量级网络和移动网络我们已经看到,复杂的网络需要大量的计算资源,如GPU,用于训练和快速推理。然而,事实证明,在大多数情况下,参数数量明显较少的模型仍然可以被训练为表现得相当好。换句话说,模型复杂性的增加通常会导致模型性能的小幅(非成比例)增加。我们在模块开始时
- 基于轻量级ShuffleNetv2+YOLOv5的DIC-C2DH-HeLa细胞检测识别分析系统
Together_CZ
深度学习机器学习人工智能深度学习
ShuffleNetv2可以说是目前轻量级网络模型中的翘楚,将ShuffleNetv2于yolov5整合开发可以使得模型更加轻量化,在提升模型速度的同时保证有效的精度。本文的主要工作就是将ShuffleNetv2整合进yolov5中来开发构建细胞检测模型,首先看下效果图:这里是基于yolov5s进行改进融合的,改进后的yaml文件如下所示:#parametersnc:1depth_multiple
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象