最近接触到了树分块(大三才接触到了QAQ),然后打算总结下……
简单回顾一下普通的莫队算法,莫队算法是用来解决区间询问的算法,其把区间分成 n√ 份,每份的大小是 n√ 。把所有询问按其左端点所在区间为第一关键字,右端点按第二关键字排序,然后依次移动左右指针,处理相关询问。算法的时间复杂度在于当前区间的左右指针移动。左指针每次只会在块内移动,复杂度为 O(q∗n√) ,因为相同块的询问的右指针是递增的,所以每块的右指针总共会移动n次,共有 n√ 块,所以右指针的复杂度是 O(n∗n√) 。总复杂度为 O(n∗n√) 。
cf上有个博客说的很清楚(虽然是英文)地址:http://codeforces.com/blog/entry/43230,博客的大意就是说通过dfs序,把一颗n个节点的树变成一个2 * n的dfs序数组,该数组下标是dfs序,内容是dfs序对应的树上的节点。然后通过判断(u, v)的lca,就可以判断出u到v的路径。
具体操作是:设in[x]为节点x的入度,out[x]为节点x的出度,令in[u] < in[v],如果u就是(u, v)的lca,那么这个路径就是dfs序数组的in[u]到in[v]的下标,如果u不是(u, v)的lca,那么这个路径是dfs数组的out[u]到in[v]的下标外加lca。
为什么?不为什么,这就是dfs序的性质。
复杂度 O(n∗n√)
spoj上的COT2就是这样的问题:http://www.spoj.com/problems/COT2/
代码见后面第1份代码
了解了静态的树上莫队,只要知道带修改的普通莫队,就可以写出带修改的树上莫队了。
面对一个普通的单点修改的区间询问问题,可以把整个区间分成 n1/3 块,每块的大小是 n2/3 ,然后对每个询问,按其左端点所在区间编号为第一关键字,右端点所在区间为第二关键字,询问的时间为第三关键字排序。然后依次处理询问就好了,这样排序后的询问根据左右端点所处区间不同被分成了 n1/3∗n1/3=n2/3 个不同区间,每个区间修改操作各有q次,总共修改了 q∗n2/3 次,每个区间的左右端点都只会移动 n2/3 距离,所以左右指针移动的总体复杂度是 O(q∗n2/3) ,时间复杂度 O(n5/3)
bzoj 2120:http://www.lydsy.com/JudgeOnline/problem.php?id=2120
代码见后面第2份代码
其实自己感觉大多数不在树上的查询问题,都有比莫队更优的方法?树上的分块由于要判断一个树链上的点是否在集合里,所以一定要有一个O(n)的数组用来判断,此时莫队才在时空上更优秀(求指正)。
把上述两个方法放在一起,就是带修改的树上莫队了。
UOJ 58:http://uoj.ac/problem/58?locale=en
代码见后面第3份代码
还有这么一类问题,一条给定的树链,要求你在这个树链上k步k步跳着走,然后询问经过的点上各个点权的相关问题(如经过点的异或和,经过所有点的最大值)
如 HDOJ 5840,以及计蒜课 xor
对于这种问题,如果k = 1,那么就成了一个树链剖分问题,又考虑如果k很大的情况,那么没几步我们就能跳完所有树链。
分别考虑上述两种情况:
问题在于找到一个合适的分界点,把两个k区分开,自己目前感觉k为10左右的某个区分点可以得到较好的效果。
代码见第4分代码(感觉这篇博客应该拆成4篇写的QAQ
spoj COT2 代码
#include
#include
#include
#include
#include
#include
using namespace std;
#define PB push_back
const int N = 4e4 + 5;
const int M = 1e5 + 5;
int pos[N<<1];
struct Query {
int l, r, fa, id;
bool operator<(const Query &rhs) {
return pos[l] < pos[rhs.l] || (pos[l] == pos[rhs.l] && r < rhs.r);
}
};
int n, m;
int lim, idx;
int res, ans[M];
int val[N], a[N<<1], hsh[N], tot;
int in[N], out[N];
int siz[N], son[N], dep[N], pa[N], top[N];
int cnt[N];
bool used[N];
vector<int> edges[N];
Query querys[M];
void dfs1(int u, int fa) {
in[u] = ++idx;
a[idx] = u;
pa[u] = fa, siz[u] = 1; son[u] = 0; dep[u] = dep[fa] + 1;
for (int v: edges[u]) {
if (v == fa) continue;
dfs1(v, u);
siz[u] += siz[v];
if (siz[son[u]] < siz[v]) son[u] = v;
}
out[u] = ++idx;
a[idx] = u;
}
void dfs2(int u, int fa) {
top[u] = fa;
if (son[u]) dfs2(son[u], fa);
for (int v: edges[u]) {
if (v == pa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
inline int lca(int u, int v) {
for (; top[u] != top[v]; u = pa[top[u]]) if (dep[top[u]] < dep[top[v]]) swap(u, v);
return dep[u] < dep[v] ? u : v;
}
inline void flip(int x) {
if (used[x] && (--cnt[val[x]]) == 0) --res;
else if (!used[x] && (cnt[val[x]]++) == 0) ++res;
used[x] ^= true;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
tot = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d", val + i);
hsh[tot++] = val[i];
edges[i].clear();
used[i] = false;
}
sort(hsh, hsh + tot);
tot = unique(hsh, hsh + tot) - hsh;
for (int i = 1; i <= n; ++i) val[i] = lower_bound(hsh, hsh + tot, val[i]) - hsh;
int u, v, fa;
for (int i = 1; i < n; ++i) {
scanf("%d%d", &u, &v);
edges[u].PB(v);
edges[v].PB(u);
}
idx = 0;
dfs1(1, 0);
dfs2(1, 1);
for (lim = 1; lim * lim < idx; ++lim);
for (int i = 1; i <= idx; ++i) pos[i] = (i - 1) / lim + 1;
for (int i = 0; i < m; ++i) {
scanf("%d%d", &u, &v);
if (in[u] > in[v]) swap(u, v);
querys[i].id = i;
fa = lca(u, v);
if (fa == u) {
querys[i].l = in[u]; querys[i].r = in[v]; querys[i].fa = 0;
}
else {
querys[i].l = out[u]; querys[i].r = in[v]; querys[i].fa = in[fa];
}
}
sort(querys, querys + m);
int l = querys[0].l; int r = querys[0].l - 1;
res = 0;
for (int i = 0; i < tot; ++i) cnt[i] = 0;
for (int i = 0; i < m; ++i) {
while (l < querys[i].l) flip(a[l++]);
while (l > querys[i].l) flip(a[--l]);
while (r < querys[i].r) flip(a[++r]);
while (r > querys[i].r) flip(a[r--]);
if (querys[i].fa) flip(a[querys[i].fa]);
ans[querys[i].id] = res;
if (querys[i].fa) flip(a[querys[i].fa]);
}
for (int i = 0; i < m; ++i) printf("%d\n", ans[i]);
}
}
bzoj 2120 代码
#include
#include
#include
#include
using namespace std;
const int N = 1e4 + 5;
const int M = 1e6 + 5;
int pos[N];
struct Query {
int l, r, tim, id;
Query(int l = 0, int r = 0, int tim = 0, int id = 0):
l(l), r(r), tim(tim), id(id) {}
bool operator<(const Query &rhs) const {
if (pos[l] != pos[rhs.l]) return pos[l] < pos[rhs.l];
if (pos[r] != pos[rhs.r]) return pos[r] < pos[rhs.r];
return tim < rhs.tim;
}
};
struct Modify {
int pos, v;
Modify(int pos=0, int v=0): pos(pos), v(v) {}
};
int n, q, m, block_siz;
int tot, tim, res, l, r, cur;
int val[N], ans[N];
int cnt[M];
char op[5];
Query querys[N];
Modify modifys[N];
inline void insert(int x) { res += (++cnt[x]) == 1; }
inline void erase(int x) { res -= (--cnt[x]) == 0; }
inline void change(int t) {
int pos = modifys[t].pos, v = modifys[t].v;
int VAL = val[pos];
if (l <= pos && pos <= r) {
insert(v);
erase(VAL);
}
val[pos] = v; modifys[t].v = VAL;
}
int main() {
while (~scanf("%d%d", &n, &q)) {
for (block_siz = 1; block_siz * block_siz * block_siz < n; ++block_siz);
block_siz *= block_siz;
for (int i = 1; i <= n; ++i) {
scanf("%d", val + i);
pos[i] = (i - 1) / block_siz + 1;
}
int x, y;
tim = tot = 0;
for (int i = 1; i <= q; ++i) {
scanf("%s%d%d", op, &x, &y);
if (op[0] == 'Q') {
querys[tot] = Query(x, y, tim, tot);
++tot;
}
else {
modifys[++tim] = Modify(x, y);
}
}
sort(querys, querys + tot);
for (int i = 0; i < M; ++i) cnt[i] = 0;
l = 1, r = 0, cur = 0;
res = 0;
for (int i = 0; i < tot; ++i) {
while (cur < querys[i].tim) change(++cur);
while (cur > querys[i].tim) change(cur--);
while (r < querys[i].r) insert(val[++r]);
while (r > querys[i].r) erase(val[r--]);
while (l < querys[i].l) erase(val[l++]);
while (l > querys[i].l) insert(val[--l]);
ans[querys[i].id] = res;
}
for (int i = 0; i < tot; ++i) printf("%d\n", ans[i]);
}
}
uoj 58 代码
#include
#include
#include
#include
#include
using namespace std;
#define PB push_back
typedef long long LL;
const int N = 1e5 + 5;
int pos[N<<1], block_siz;
struct Query {
int l, r, tim, id, fa;
Query(int l = 0, int r = 0, int tim = 0, int id = 0, int fa = 0):
l(l), r(r), tim(tim), id(id), fa(fa) {}
bool operator<(const Query &rhs) const {
if (pos[l] != pos[rhs.l]) return pos[l] < pos[rhs.l];
if (pos[r] != pos[rhs.r]) return pos[r] < pos[rhs.r];
return tim < rhs.tim;
}
};
struct Modify {
int pos, v;
Modify(int pos = 0, int v = 0):
pos(pos), v(v) {}
};
int n, m, q;
int v[N], w[N], c[N];
int pa[N], siz[N], dep[N], son[N], top[N], in[N], out[N], clk[N<<1], idx;
int cnt[N], tim, tot, l, r, cur;
LL res, ans[N];
bool used[N];
vector<int> edges[N];
Query querys[N];
Modify modifys[N];
void dfs1(int u, int fa) {
in[u] = ++idx; clk[idx] = u;
pa[u] = fa; siz[u] = 1; dep[u] = dep[fa] + 1; son[u] = 0;
for (int v: edges[u]) {
if (v == fa) continue;
dfs1(v, u);
siz[u] += siz[v];
if (siz[son[u]] < siz[v]) son[u] = v;
}
out[u] = ++idx;
clk[idx] = u;
}
void dfs2(int u, int fa) {
top[u] = fa;
if (son[u]) dfs2(son[u], fa);
for (int v: edges[u]) {
if (v == son[u] || v == pa[u]) continue;
dfs2(v, v);
}
}
inline int lca(int u, int v) {
for (; top[u] != top[v]; u = pa[top[u]]) if (dep[top[u]] < dep[top[v]]) swap(u, v);
return dep[u] < dep[v] ? u : v;
}
inline void flip(int x) {
if (!used[x]) res += 1LL * v[c[x]] * w[++cnt[c[x]]];
else res -= 1LL * v[c[x]] * w[cnt[c[x]]--];
used[x] ^= true;
}
inline void change(int t) {
int pos = modifys[t].pos, V = modifys[t].v; int C = c[pos];
if (used[pos]) {
res -= 1LL * v[C] * w[cnt[C]--];
res += 1LL * v[V] * w[++cnt[V]];
}
c[pos] = V; modifys[t].v = C;
}
int main() {
while (~scanf("%d%d%d", &n, &m, &q)) {
for (int i = 1; i <= m; ++i) scanf("%d", v + i);
for (int i = 1; i <= n; ++i) scanf("%d", w + i);
for (int i = 1; i <= n; ++i) edges[i].clear();
int u, v;
for (int i = 1; i < n; ++i) {
scanf("%d%d", &u, &v);
edges[u].PB(v);
edges[v].PB(u);
}
for (int i = 1; i <= n; ++i) scanf("%d", c + i);
idx = 0;
dfs1(1, 0);
dfs2(1, 1);
for (block_siz = 1; block_siz * block_siz * block_siz < idx; ++block_siz);
block_siz *= block_siz;
for (int i = 1; i <= idx; ++i) pos[i] = (i - 1) / block_siz + 1;
int op, x, y, fa;
tim = tot = 0;
for (int i = 1; i <= q; ++i) {
scanf("%d%d%d", &op, &x, &y);
if (op) {
if (in[x] > in[y]) swap(x, y);
fa = lca(x, y);
if (fa == x) {
querys[tot] = Query(in[x], in[y], tim, tot);
++tot;
}
else {
querys[tot] = Query(out[x], in[y], tim, tot, fa);
++tot;
}
}
else {
modifys[++tim] = Modify(x, y);
}
}
sort(querys, querys + tot);
for (int i = 1; i <= n; ++i) used[i] = false;
for (int i = 1; i <= m; ++i) cnt[i] = 0;
l = 1; r = 0; cur = 0; res = 0;
for (int i = 0; i < tot; ++i) {
while (r < querys[i].r) flip(clk[++r]);
while (r > querys[i].r) flip(clk[r--]);
while (l < querys[i].l) flip(clk[l++]);
while (l > querys[i].l) flip(clk[--l]);
while (cur < querys[i].tim) change(++cur);
while (cur > querys[i].tim) change(cur--);
if (querys[i].fa) flip(querys[i].fa);
ans[querys[i].id] = res;
if (querys[i].fa) flip(querys[i].fa);
}
for (int i = 0; i < tot; ++i) printf("%lld\n", ans[i]);
}
}
HDU 5840 代码
#include
#include
#include
#include
#include
#include
using namespace std;
#define PB push_back
template<class T1, class T2> inline void gmax(T1 &a, T2 b) { if (a < b) a = b; }
typedef pair<int, int> P;
const int N = 1e5 + 5;
const int LIM = 500;
const int INF = 0x3f3f3f3f;
struct Query {
int id, step, beg, tot;
Query(int id = 0, int step = 0, int beg = 0, int tot = 0):
id(id), step(step), beg(beg), tot(tot) {}
};
int lim;
int n, q;
int stk[N];
int val[N], ans[N];
int pa[N], dep[N], siz[N], son[N], top[N], id[N], rid[N], idx;
int seg_tree[1 << 18], base;
int seq[N], beg[LIM];
vector<int> edges[N], nums[LIM];
vector querys[N], small_query[LIM];
void dfs1(int u, int fa) {
siz[u] = 1; son[u] = 0; pa[u] = fa;
dep[u] = dep[fa] + 1;
for (int v: edges[u]) {
if (v == fa) continue;
dfs1(v, u);
siz[u] += siz[v];
if (siz[son[u]] < siz[v]) son[u] = v;
}
}
void dfs2(int u, int fa) {
id[u] = ++idx; rid[idx] = u; top[u] = fa;
if (son[u]) dfs2(son[u], fa);
for (int v: edges[u]) {
if (v == pa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
inline int lca(int u, int v) {
for (; top[u] != top[v]; u = pa[top[u]]) if (dep[top[u]] < dep[top[v]]) swap(u, v);
return dep[u] < dep[v] ? u : v;
}
void dfsAns(int u, int fa) {
stk[dep[u]] = val[u];
Query q;
for (int i = 0; i < querys[u].size(); ++i) {
q = querys[u][i];
while (q.beg <= q.tot) {
gmax(ans[q.id], stk[dep[u] - q.beg]);
q.beg += q.step;
}
}
for (int v: edges[u]) {
if (v == fa) continue;
dfsAns(v, u);
}
}
inline void update(int x, int v) {
x += base;
seg_tree[x] = v;
for (x >>= 1; x; x >>= 1) seg_tree[x] = max(seg_tree[x << 1], seg_tree[x << 1 | 1]);
}
inline int segmentQuery(int l, int r) {
int ret = -INF;
l += base - 1; r += base + 1;
for (; l ^ r ^ 1; l >>= 1, r >>= 1) {
if (~ l & 1) gmax(ret, seg_tree[l ^ 1]);
if (r & 1) gmax(ret, seg_tree[r ^ 1]);
}
return ret;
}
inline int QUERY(int l, int r, int col) {
int tl = lower_bound(nums[col].begin(), nums[col].end(), l) - nums[col].begin() + beg[col];
int tr = upper_bound(nums[col].begin(), nums[col].end(), r) - nums[col].begin() - 1 + beg[col];
if (!(beg[col] <= tl && tl < beg[col + 1])) tl = 1e9;
if (!(beg[col] <= tl && tl < beg[col + 1])) tr = -1;
return tl <= tr ? segmentQuery(tl, tr) : 0;
}
inline int query(int u, int v, int k) {
int fa = lca(u, v);
int cu = (dep[u] + 1) % k;
int cv = (dep[fa] + (k - (dep[u] - dep[fa] + 1) % k)) % k;
int ret = -INF;
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
gmax(ret, QUERY(id[top[u]], id[u], cu));
u = top[u]; u = pa[u];
}
else {
gmax(ret, QUERY(id[top[v]], id[v], cv));
v = top[v]; v = pa[v];
}
}
if (dep[u] > dep[v]) {
gmax(ret, QUERY(id[v], id[u], cu));
}
else {
gmax(ret, QUERY(id[u], id[v], cv));
}
return ret;
}
inline void solve(int k) {
for (int i = 1; i <= n; ++i) {
nums[dep[rid[i]] % k].PB(i);
}
for (int i = 0; i <= base << 1; ++i) seg_tree[i] = 0;
idx = 0;
for (int i = 0; i < k; ++i) {
beg[i] = idx + 1;
for (int t: nums[i]) {
update(++idx, val[rid[t]]);
}
}
beg[k] = idx + 1;
int u, v;
for (Query q: small_query[k]) {
u = q.step; v = q.beg;
ans[q.id] = query(u, v, k);
}
for (int i = 0; i < k; ++i) nums[i].clear();
}
int main() {
int T, kase = 0;
scanf("%d", &T);
// read(T);
while (T--) {
scanf("%d%d", &n, &q);
lim = 10;
// read(n); read(q);
for (int i = 1; i <= n; ++i) {
edges[i].clear();
querys[i].clear();
scanf("%d", val + i);
// read(val[i]);
}
int u, v, k, fa, l1, l2;
for (int i = 1; i < n; ++i) {
scanf("%d%d", &u, &v);
// read(u); read(v);
edges[u].PB(v);
edges[v].PB(u);
}
idx = 0;
dfs1(1, 0);
dfs2(1, 1);
for (base = 1; base <= n + 1; base <<= 1);
// for (int i = 0; i <= base << 1; ++i) seg_tree[i] = 0;
// for (int i = 1; i <= n; ++i) update(i, val[rid[i]]);
for (int i = 1; i <= q; ++i) {
scanf("%d%d%d", &u, &v, &k);
// read(u); read(v); read(k);
if (k <= lim) {
small_query[k].PB(Query(i, u, v));
continue;
}
ans[i] = 0;
if (k > n) continue;
fa = lca(u, v);
l1 = dep[u] - dep[fa];
l2 = dep[v] - dep[fa];
if (fa ^ u) querys[u].PB(Query(i, k, k - 1, l1));
if (fa ^ v) querys[v].PB(Query(i, k, (l1 + l2 + 1) % k, l2));
}
dfsAns(1, 0);
for (int i = 1; i <= lim; ++i) if (small_query[i].size()) {
solve(i);
small_query[i].clear();
}
printf("Case #%d:\n", ++kase);
for (int i = 1; i <= q; ++i) printf("%d\n", ans[i]);
}
}