Spark 分层抽样与求最大值最小值

详见注释
package com.beagledata.spark

import org.apache.spark.{SparkConf, SparkContext}

/**
  * 分层抽样
  *
  * Created by drguo on 2017/8/21.
  * blog.csdn.net/dr_guo
  */

object PCSStratifiedSampling {
  val conf = new SparkConf().setAppName("pcs_sampling")
    .set("spark.jars.packages", "io.netty:netty-common:4.1.8.Final")
    .set("spark.jars.exclude", "io.netty:netty-common")
    //.setMaster("local")

  val sc = new SparkContext(conf)

  def main(args: Array[String]): Unit = {

    //val pcs = sc.textFile("src/main/resources/part-00000")
    //val pcs = sc.textFile("hdfs://xxxx:8020/data1/Data/NewPCSData")
    val pcs = sc.textFile(args(0))

    //设定抽样格式 double类型变量为抽取每层的比例,所有类别都要写上,不抽取的类别比例设为0
    val fractions: Map[Int, Double] = (List((-1, 1.0), (5, 1.0), (6, 1.0), (13, 1.0), (0, 0.066046),
      (3, 0.382914), (7, 0.357202), (8, 0.043421), (11, 0.69958), (1, 0.0), (2, 0.0), (4, 0.0), (-2, 0.0), (14, 0.0))).toMap

    val pcsKV = pcs.map(_.split(";")).map{x =>
      val key = x(0).toInt
      val value = x(1)+";"+x(2)+";"+x(3)+";"+x(4)
      (key, value)
    }

    val pcsSample = pcsKV.sampleByKey(withReplacement = false, fractions, 0)//0为种子,种子数相同保证每次抽样相同
      .map(x => x._1 + ";" + x._2)
    pcsSample.take(5).foreach(println)

    //pcsSample.saveAsTextFile("/data1/Data/PCSSample")
    pcsSample.saveAsTextFile(args(1))

  }
}
参考链接:
http://www.cnblogs.com/skyEva/p/5554130.html
http://blog.csdn.net/xubo245/article/details/51485443
https://github.com/endymecy/spark-ml-source-analysis/blob/master/%E5%9F%BA%E6%9C%AC%E7%BB%9F%E8%AE%A1/tratified-sampling.md
package com.beagledata.spark

import org.apache.spark.{SparkConf, SparkContext}

/**
  * pcs数据统计:按类别,x最大值,x最小值,y最大值,y最小值,x个数,y个数统计
  *
  * Created by drguo on 2017/8/21.
  * blog.csdn.net/dr_guo
  */

object PCSDataCount {
  val conf = new SparkConf().setAppName("pcscount")
    .set("spark.jars.packages", "io.netty:netty-common:4.1.8.Final")
    .set("spark.jars.exclude", "io.netty:netty-common")
    //.setMaster("local")

  val sc = new SparkContext(conf)

  def main(args: Array[String]): Unit = {

    //val pcs = sc.textFile("src/main/resources/part-00000")
    //val pcs = sc.textFile("hdfs://xxxx:8020/data1/Data/NewPCSData")
    val pcs = sc.textFile(args(0))

    //按类别,x最大值,x最小值,y最大值,y最小值,x个数,y个数统计
    val labelxy = pcs.map(_.split(";"))
     .map(x => "label:"+x(0)+"\tx_max:"+x(1).split(",").max+"\tx_min:"+x(1).split(",").min+"\ty_max:"+x(2).split(",").max+"\ty_min:"+x(2).split(",").min+"\tx_length:"+x(1).split(",").length+"\ty_length:"+x(2).split(",").length)//.take(10).foreach(println)

    labelxy.saveAsTextFile("/data1/Data/PCSDataCount")

    //类别统计:统计每类有多少元素(类似wordcount)
    pcs.map(_.split(";")).map(x => x(0)).map((_, 1)).reduceByKey(_+_).collect().foreach(println)

  }
}

你可能感兴趣的:(Spark,大数据动物园)