spark storm 反压

 

因特殊业务场景,如大促、秒杀活动与突发热点事情等业务流量在短时间内剧增,形成巨大的流量毛刺,数据流入的速度远高于数据处理的速度,对流处理系统构成巨大的负载压力,如果不能正确处理,可能导致集群资源耗尽最终集群崩溃,因此有效的反压机制(backpressure)对保障流处理系统的稳定至关重要。

Storm和Spark Streaming都提供了反压机制,实现各不相同

对于开启了acker机制的storm程序,可以通过设置conf.setMaxSpoutPending参数来实现反压效果,如果下游组件(bolt)处理速度跟不上导致spout发送的tuple没有及时确认的数超过了参数设定的值,spout会停止发送数据,这种方式的缺点是很难调优conf.setMaxSpoutPending参数的设置以达到最好的反压效果,设小了会导致吞吐上不去,设大了会导致worker OOM;有震荡,数据流会处于一个颠簸状态,效果不如逐级反压;另外对于关闭acker机制的程序无效;

新的storm自动反压机制(Automatic Back Pressure)通过监控bolt中的接收队列的情况,当超过高水位值时专门的线程会将反压信息写到 Zookeeper ,Zookeeper上的watch会通知该拓扑的所有Worker都进入反压状态,最后Spout降低tuple发送的速度。具体实现:

spark storm 反压_第1张图片

Spark Streaming程序中当计算过程中出现batch processing time > batch interval的情况时,(其中batch processing time为实际计算一个批次花费时间,batch interval为Streaming应用设置的批处理间隔),意味着处理数据的速度小于接收数据的速度,如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟),可以通过设置参数spark.streaming.receiver.maxRate来限制Receiver的数据接收速率,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力

Spark Streaming Backpressure:  根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性"spark.streaming.backpressure.enabled"来控制是否启用backpressure机制,默认值false,即不启用

Streaming架构如下图所示:

spark storm 反压_第2张图片

BackPressure执行过程如下图所示:

spark storm 反压_第3张图片

 本文转至:https://www.cnblogs.com/barrenlake/p/5349949.html

3.1 RateController类体系

                RatenController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
**
  * A StreamingListener that receives batch completion updates, and maintains
  * an estimate of the speed at which  this  stream should ingest messages,
  * given an estimate computation from a `RateEstimator`
  */
private [streaming]  abstract  class  RateController( val  streamUID :  Int, rateEstimator :  RateEstimator)
extends  StreamingListener  with  Serializable {
……
……   /**
    * Compute the new rate limit and publish it asynchronously.
    */
   private  def  computeAndPublish(time :  Long, elems :  Long, workDelay :  Long, waitDelay :  Long) :  Unit  =
     Future[Unit] {
       val  newRate  =  rateEstimator.compute(time, elems, workDelay, waitDelay)
       newRate.foreach { s  = >
         rateLimit.set(s.toLong)
         publish(getLatestRate())
       }
     }
   def  getLatestRate() :  Long  =  rateLimit.get()
 
   override  def  onBatchCompleted(batchCompleted :  StreamingListenerBatchCompleted) {
     val  elements  =  batchCompleted.batchInfo.streamIdToInputInfo
     for  {
       processingEnd <- batchCompleted.batchInfo.processingEndTime
       workDelay <- batchCompleted.batchInfo.processingDelay
       waitDelay <- batchCompleted.batchInfo.schedulingDelay
       elems <- elements.get(streamUID).map( _ .numRecords)
     } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
   }
}  

 

3.2 RateController的注册

                JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def  start() :  Unit  =  synchronized {
    if  (eventLoop ! =  null return  // scheduler has already been started
 
    logDebug( "Starting JobScheduler" )
    eventLoop  =  new  EventLoop[JobSchedulerEvent]( "JobScheduler" ) {
      override  protected  def  onReceive(event :  JobSchedulerEvent) :  Unit  =  processEvent(event)
 
      override  protected  def  onError(e :  Throwable) :  Unit  =  reportError( "Error in job scheduler" , e)
    }
    eventLoop.start()
 
    // attach rate controllers of input streams to receive batch completion updates
    for  {
      inputDStream <- ssc.graph.getInputStreams
      rateController <- inputDStream.rateController
    } ssc.addStreamingListener(rateController)
 
    listenerBus.start()
    receiverTracker  =  new  ReceiverTracker(ssc)
    inputInfoTracker  =  new  InputInfoTracker(ssc)
    receiverTracker.start()
    jobGenerator.start()
    logInfo( "Started JobScheduler" )
  }

 

3.3 BackPressure执行过程分析

                BackPressure 执行过程分为BatchCompleted事件触发时机和事件处理两个过程

3.3.1 BatchCompleted触发过程

                对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。

                Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个Job Set.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/** Generate jobs and perform checkpoint for the given `time`.  */
private  def  generateJobs(time :  Time) {
   // Set the SparkEnv in this thread, so that job generation code can access the environment
   // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
   // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
   SparkEnv.set(ssc.env)
 
   // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
   // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
   ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT _ ALL _ MARKED _ ANCESTORS,  "true" )
   Try {
     jobScheduler.receiverTracker.allocateBlocksToBatch(time)  // allocate received blocks to batch
     graph.generateJobs(time)  // generate jobs using allocated block
   match  {
     case  Success(jobs)  = >
       val  streamIdToInputInfos  =  jobScheduler.inputInfoTracker.getInfo(time)
       jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
     case  Failure(e)  = >
       jobScheduler.reportError( "Error generating jobs for time "  + time, e)
   }
   eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater  =  false ))
}

 其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

1
2
3
4
5
6
7
8
9
10
def  submitJobSet(jobSet :  JobSet) {
   if  (jobSet.jobs.isEmpty) {
     logInfo( "No jobs added for time "  + jobSet.time)
   else  {
     listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
     jobSets.put(jobSet.time, jobSet)
     jobSet.jobs.foreach(job  = > jobExecutor.execute( new  JobHandler(job)))
     logInfo( "Added jobs for time "  + jobSet.time)
   }
}

其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:

  当Job执行完成时,向eventLoop发送JobCompleted事件。EventLoop事件处理器接到JobCompleted事件后将调用handleJobCompletion 来处理Job完成事件。handleJobCompletion使用Job执行信息创建StreamingListenerBatchCompleted事件并通过StreamingListenerBus向监听器发送。实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
private  def  handleJobCompletion(job :  Job, completedTime :  Long) {
    val  jobSet  =  jobSets.get(job.time)
    jobSet.handleJobCompletion(job)
    job.setEndTime(completedTime)
    listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
    logInfo( "Finished job "  + job.id +  " from job set of time "  + jobSet.time)
    if  (jobSet.hasCompleted) {
      jobSets.remove(jobSet.time)
      jobGenerator.onBatchCompletion(jobSet.time)
      logInfo( "Total delay: %.3f s for time %s (execution: %.3f s)" .format(
        jobSet.totalDelay /  1000.0 , jobSet.time.toString,
        jobSet.processingDelay /  1000.0
      ))
      listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
    }
    job.result  match  {
      case  Failure(e)  = >
        reportError( "Error running job "  + job, e)
      case  _  = >
    }
  }

 

3.3.2、BatchCompleted事件处理过程

                StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

1
2
3
4
5
6
7
8
9
10
override  def  onBatchCompleted(batchCompleted :  StreamingListenerBatchCompleted) {
   val  elements  =  batchCompleted.batchInfo.streamIdToInputInfo
 
   for  {
     processingEnd <- batchCompleted.batchInfo.processingEndTime
     workDelay <- batchCompleted.batchInfo.processingDelay
     waitDelay <- batchCompleted.batchInfo.schedulingDelay
     elems <- elements.get(streamUID).map( _ .numRecords)
   } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
}

  onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate并发布。代码如下:

复制代码
  /**
   * Compute the new rate limit and publish it asynchronously.
   */
  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
        rateLimit.set(s.toLong)
        publish(getLatestRate())
      }
    }
复制代码

其中publish()由RateController的子类ReceiverRateController来定义。具体逻辑如下(ReceiverInputDStream中定义):

 

复制代码
  /**
   * A RateController that sends the new rate to receivers, via the receiver tracker.
   */
  private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
      extends RateController(id, estimator) {
    override def publish(rate: Long): Unit =
      ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
  }
复制代码

publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

1
2
3
4
5
6
/** Update a receiver's maximum ingestion rate */
def  sendRateUpdate(streamUID :  Int, newRate :  Long) :  Unit  =  synchronized {
   if  (isTrackerStarted) {
     endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
   }
}

ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。

其中RateLimiter的updateRate实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
   * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
   * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
   *
   * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
   */
  private [receiver]  def  updateRate(newRate :  Long) :  Unit  =
    if  (newRate >  0 ) {
      if  (maxRateLimit >  0 ) {
        rateLimiter.setRate(newRate.min(maxRateLimit))
      else  {
        rateLimiter.setRate(newRate)
      }
    }

 setRate的实现 如下:

1
2
3
4
5
6
7
8
9
10
public  final  void setRate(double permitsPerSecond) {
     Preconditions.checkArgument(permitsPerSecond >  0.0
         && !Double.isNaN(permitsPerSecond),  "rate must be positive" );
     synchronized (mutex) {
       resync(readSafeMicros());
       double stableIntervalMicros  =  TimeUnit.SECONDS.toMicros( 1 L) / permitsPerSecond;   //固定间隔
       this .stableIntervalMicros  =  stableIntervalMicros;
       doSetRate(permitsPerSecond, stableIntervalMicros);
     }
   }

到此,backpressure反压机制调整rate结束。

 

4.流量控制点

  当Receiver开始接收数据时,会通过supervisor.pushSingle()方法将接收的数据存入currentBuffer等待BlockGenerator定时将数据取走,包装成block. 在将数据存放入currentBuffer之时,要获取许可(令牌)。如果获取到许可就可以将数据存入buffer, 否则将被阻塞,进而阻塞Receiver从数据源拉取数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
  * Push a single data item into the buffer.
  */
def  addData(data :  Any) :  Unit  =  {
   if  (state  ==  Active) {
     waitToPush()   //获取令牌
     synchronized {
       if  (state  ==  Active) {
         currentBuffer + =  data
       else  {
         throw  new  SparkException(
           "Cannot add data as BlockGenerator has not been started or has been stopped" )
       }
     }
   else  {
     throw  new  SparkException(
       "Cannot add data as BlockGenerator has not been started or has been stopped" )
   }
}

 

      其令牌投放采用令牌桶机制进行, 原理如下图所示:

spark storm 反压_第4张图片

令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。

  Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer.  然后等价后续生成block操作。

本文转自

https://www.cnblogs.com/barrenlake/p/5349949.html

https://blog.csdn.net/zengxiaosen/article/details/72822869

你可能感兴趣的:(spark storm 反压)