#184-[线段树]天才的记忆

Description

原题来自:Vijos P1512

从前有个人名叫 W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏。在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。

题目是这样的:给你一大串数字(编号为 1 到 N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B,要求你瞬间就说出属于 A 到 B 这段区间内的最大数。

一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。BUT,她每次都以失败告终,因为这数字的个数是在太多了!于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

Input

第一行一个整数 N 表示数字的个数,接下来一行为 N 个数。第三行读入一个 M,表示你看完那串数后需要被提问的次数,接下来 M 行,每行都有两个整数 A,B。

Output

输出共 M 行,每行输出一个数,表示对一个问题的回答。

6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3
  • Sample Input

34
123
123
8
  • Sample Output

HINT

对于 30% 的数据,1≤N≤104,  1≤M≤100;

对于100% 的数据,1≤N≤2×105,   1≤M≤104。

Source/Category

LibreOJ 

 

线段树可以做

RMQ也行啦~只是不想做而已

 

#include 
#include 

#define SIZE 800010 // 大小是元素个数的四倍
#define INF 2147483647

using namespace std;

int dp[SIZE];

void buildtree(int pos, int l, int r) // 建树
{
	int mid;
	
	if (l == r)
	{
		scanf("%d", &dp[pos]);
		return;
	}
	mid = l + r >> 1;
	buildtree(pos << 1, l, mid);
	buildtree(pos << 1 | 1, mid + 1, r);
	dp[pos] = max(dp[pos<<1], dp[pos<<1|1]); // 取最小值
	
	return;
}

// 因为没有更改操作,就没有update函数了

int query(int pos, int l, int r, int x, int y) // 查询
{
	int mid, a, b;
	
	if ((l >= x) && (r <= y))
	{
		return dp[pos];
	}
	mid = l + r >> 1;
	a = b = -INF;
	if (x <= mid)
	{
		a = query(pos << 1, l, mid, x, y);
	}
	if (y >= mid + 1)
	{
		b = query(pos << 1 | 1, mid + 1, r, x, y);
	}
	
	return max(a, b);
}

int main(void)
{
	int n, m, x, y;
	
	scanf("%d", &n);
	buildtree(1, 1, n);
	scanf("%d", &m);
	while (m--)
	{
		scanf("%d%d", &x, &y);
		if (x > y)
		{
			swap(x, y); // 防止某些坑人的现象......
		}
		printf("%d\n", query(1, 1, n, x, y)); // 查询
	}
	
	return 0;
}

 

你可能感兴趣的:(刷题,gdgzoi刷题)