面对数据质量高的、跨系统的优质数据源,那么,我们该如何充分利用这些优势呢?

1.研究数据仓库模型:数仓的精髓就是面向主题的模型,能理解各大主题域范畴,熟悉不同主题间的关系,基本就掌握了数仓的架构;

2.学习数据仓库设计文档:设计文档是业务与数据,数仓与源系统的桥梁,熟悉表间mapping映射,就能快速定位需求变量的来源和处理逻辑,全面了解相关业务;

3.熟悉数据字典表:数据字典是数据仓库物理存储的信息库,可以通过数据字典了解库、表、字段不同层级的关系、存储、类型等信息;

4.研究ETL脚本:学习几个数据仓库ETL加工脚本,能更细致的探索数据加工处理逻辑,更清楚的理解数仓加工模式,快速掌握数据加工技巧;

5.观察明细数据:想要真正了解数据,就必须对具体数据进行不同维度和层次的观察;比如事件表,从交易类型、时间、渠道、业务种类等多个维度捞几条数据,观察某个相同条件下不同维度的交易变化,了解银行交易的全景信息,帮助理解业务,熟悉数据。

事实上,除此之外,数据处理人员还应该从中学习到数据仓库的思想:面向主题,逐层加工。
  
  人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
大数据时代,主要需要什么类型的人才?
http://www.duozhishidai.com/article-1554-1.html
对于大数据开发的学习,最经典的学习路线是什么?
http://www.duozhishidai.com/article-1544-1.html
大数据人才定义和分类
http://www.duozhishidai.com/article-405-1.html


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

面对数据质量高的、跨系统的优质数据源,那么,我们该如何充分利用这些优势呢?_第1张图片

你可能感兴趣的:(数据源,大数据)