决策树构建与深度节点数简单例子

1、构建treePlotter.py

#coding:utf-8
import matplotlib.pyplot as plt

# 定义决策树决策结果的属性,用字典来定义  
# 下面的字典定义也可写作 decisionNode={boxstyle:'sawtooth',fc:'0.8'}  
# boxstyle为文本框的类型,sawtooth是锯齿形,fc是边框线粗细  
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    # annotate是关于一个数据点的文本  
    # nodeTxt为要显示的文本,centerPt为文本的中心点,箭头所在的点,parentPt为指向文本的点 
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )

def createSimplePlot():     
    fig = plt.figure(1,facecolor='white') # 定义一个画布,背景为白色
    fig.clf() # 把画布清空
    # createPlot.ax1为全局变量,绘制图像的句柄,subplot为定义了一个绘图,
    #111表示figure中的图有1行1列,即1个,最后的1代表第一个图 
    # frameon表示是否绘制坐标轴矩形 
    createPlot.ax1 = plt.subplot(111,frameon=False) 
    plotNode('a decision node',(0.5,0.1),(0.1,0.5),decisionNode) 
    plotNode('a leaf node',(0.8,0.1),(0.3,0.8),leafNode) 
    plt.show() 
    

def getNumLeafs(myTree):
    numLeafs = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]    
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else: numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]    
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1+ getTreeDepth(secondDict[key])
        else: thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])# 定义横纵坐标轴,无内容  
    #createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) # 绘制图像,无边框,无坐标轴  
    createPlot.ax1 = plt.subplot(111, frameon=False) 
    plotTree.totalW = float(getNumLeafs(inTree))   #全局变量宽度 = 叶子数
    plotTree.totalD = float(getTreeDepth(inTree))  #全局变量高度 = 深度
    #图形的大小是0-1 ,0-1
    plotTree.xOff = -0.5/plotTree.totalW;  #例如绘制3个叶子结点,坐标应为1/3,2/3,3/3
    #但这样会使整个图形偏右因此初始的,将x值向左移一点。
    plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)  #当前树的叶子数
    depth = getTreeDepth(myTree) #没有用到这个变量
    firstSides = list(myTree.keys())
    firstStr = firstSides[0] 
    #cntrPt文本中心点   parentPt 指向文本中心的点 
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt) #画分支上的键
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD #从上往下画
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#如果是字典则是一个判断(内部)结点  
            plotTree(secondDict[key],cntrPt,str(key))       
        else:   #打印叶子结点
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD 

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    

#这个是用来创建数据集即决策树
def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0:{'flippers': {0: 'no', 1: 'yes'}}, 1: {'flippers': {0: 'no', 1: 'yes'}}, 2:{'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

2、构建Tree test.py

import treePlotter
#treePlotter.createSimplePlot()

mytree= {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}} 

#mytree =  treePlotter.retrieveTree(0)
print (treePlotter.getNumLeafs(mytree))
print (treePlotter.getTreeDepth(mytree))
treePlotter.createPlot(mytree)


你可能感兴趣的:(决策树构建与深度节点数简单例子)