两次失败的尝试

前几日写了一个链表实现的神经网络,没有实际运行,由于没有使用Vector的数据结构,效率肯定很低,由于没有运行肯定有错呵呵,可以当成类似于算法导论里的伪代码看吧呵呵

import random
import numpy as np
import pandas as pd
import copy

def tanh(x):
    return np.tanh(x)
def tanh_derivative(x):
    return 1.0 - x * x
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
    return x * (1 - x)
def relu(x):
	return max(x, 0)
def relu_derivative(x):
	if x <= 0:
		return 0
	else:
		return 1

class ActivationFunc:
	def __init__(self):
		self.tdict = dict()
		self.tdict['tanh'] = np.tanh
		self.tdict['sigmoid'] = lambda x: 1 / (1 + np.exp(-x))
		self.tdict['relu'] = relu
		self.tdict['softmax'] = np.exp
		self.ddict = dict()
		self.ddict['tanh'] = tanh_derivative
		self.ddict['sigmoid'] = sigmoid_derivative
		self.ddict['relu'] = relu_derivative
		self.ddict['softmax'] = np.exp

	def getActivation(self, activation):
		if activation in self.tdict:
			return self.tdict[activation]
		else:
			return lambda x: x

	def getDActivation(self, activation):
		if activation in self.ddict:
			return self.ddict[activation]
		else:
			return lambda x: np.ones(x.shape)


class Node:
	def __init__(self, tid,  belongNet , activation = 'relu', mtype = 'middle'):
		self.id = tid
		self.mtop = 0
		self.forwardlist = []
		self.backlist = []
		self.outputd = 0
		self.inputd = 0
		self.moutput = 0
		self.minput = 0
		self.AF = ActivationFunc()
		self.Activation = self.AF.getActivation(activation)
		self.Dactivation = self.AF.getDActivation(activation)
		self.mtype = mtype
		self.Net = belongNet
		
	def fappend(self, nodeid):
		self.forwardlist.append((nodeid, random.random() - 0.5, 0))

	def bappend(self, nodeid):
		self.backlist.append(nodeid)
	
	def cleargrad(self):
		self.outputd = 0
		self.inputd = 0
		for var in self.forwardlist:
			var = var[0:1] + tuple(0)
	
	def cleari(self):
		self.minput = 0
		self.outputd = 0
		self.mtop = 0

	def forward(self):
		self.moutput = self.Activation(self.minput)
		for (nxtnode, w, _) in self.forwardlist:
			 self.Net.nodepool[nxtnode].minput += w * self.moutput 
	
	def backward(self):
		self.inputd = self.outputd * self.Dactivation(self.moutput)
		for nid in self.backlist:
			bnode = self.Net.nodepool[nid]
			fid, _w, _grad = bnode.forwardlist[bnode.mtop]
			bnode.outputd += self.inputd * _w
			bnode.fowardlist[bnode.mtop] = (fid, _w, _grad + bnode.moutput * self.inputd)
			bnode.mtop += 1 
	
	def step(self):
		for i in range(self.forwardlist):
			(nid, _w, _grad) = self.forwardlist[i]
			self.forwardlist[i] = (nid, _w-_grad, 0) 

	def activate(self):
		self.moutput = self.Activation(self.minput)
		return self.moutput

class LNet:
	def __init__(self, inputsize):
		self.nodelen = 0
		self.nodepool = []
		self.layerlist = []
		self.activationlist = []
		self.layernum = 1
		layer0 = []
		for i in range(inputsize):
			layer0.append(self.addNode(mtype = 'input'))
		self.layerlist.append(layer0)

	def addNode(self, actstr, stype):
		self.nodepool.append(Node(self.nodelen, actstr, self, mtype = stype))
		self.nodelen += 1
		return nodelen - 1

	def addLayer(self, num, wbias = True, dense = True, actstr = 'relu'):
		if dense:
			nlayer = []
			for i in range(num):
				nid = self.addNode(actstr, 'mid')
				for nodeid in self.layerlist[-1]:
					self.nodepool[nodeid].fappend(nid)
					self.nodepool[nid].bappend(nodeid)
				nlayer.append(nid)
			self.layerlist.append(nlayer)
			
	def forward(self, tinput):
		for mlayer in self.layerlist:
			for nid in mlayer:
				self.nodepool[nid].cleari()
		for tid, nid in enumerate(self.layerlist[0]):
			self.nodepool[nid].minput = tinput[tid]
		for mlayer in layerlist:
			for nid in mlayer:
				self.nodepool[nid].forward()
	
	def backward(self, loss):
		for tid, nid in enumerate(self.layerlist[-1]):
			self.nodepool[nid].outputd = loss[tid]
		for mlayer in reversed(self.layerlist):
			for nid in mlayer:
				self.nodepool[nid].backward()
				


				





	

 

后来,我又把原先写的网络(不是上面的)运用到飞行器的Takeoff,Hover,Landing训练上,结果又失败了,后来想了一下可能是由于网络的初始参数太小所导致的,但由于启动虚拟机连接模拟器太麻烦,所以没有继续尝试,不过在hover的时候如果一开始很成功一直可以保持hover,但总结来说就是很失败,根据我这么多年的经验很有可能是self.para.append(np.random.rand(densesize, tsize) - 0.5)的初始值太小,也有可能是里面数学有问题,但由于连接模拟器太麻烦(已经运行很多次了)所以没有再确认是不是这里的问题

Actor-Critic

import numpy as np
import pandas as pd
import copy
def tanh(x):
    return np.tanh(x)
def tanh_derivative(x):
    return 1.0 - x * x
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
    return x * (1 - x)
def relu(x):
	return np.maximum(x, 0)
	#t = copy.copy(x)
	#for i in range(len(t)):
	#	if t[i] < 0:
	#		t[i] = 0
	#return t

def relu_derivative(x):
	t = copy.copy(x)
	for i in range(len(t)):
		if t[i] <= (1e-12):
			t[i] = 0
		else:
			t[i] = 1
	return t


class ActivationFunc:
	def __init__(self):
		self.tdict = dict()
		self.tdict['tanh'] = np.tanh
		self.tdict['sigmoid'] = lambda x: 1 / (1 + np.exp(-np.copy(x).clip(-20, 20)))
		self.tdict['relu'] = relu
		self.tdict['softmax'] = np.exp
		self.ddict = dict()
		self.ddict['tanh'] = tanh_derivative
		self.ddict['sigmoid'] = sigmoid_derivative
		self.ddict['relu'] = relu_derivative
		self.ddict['softmax'] = lambda x:x

	def getActivation(self, activation):
		if activation in self.tdict:
			return self.tdict[activation]
		else:
			return lambda x: x

	def getDActivation(self, activation):
		if activation in self.ddict:
			return self.ddict[activation]
		else:
			return lambda x: np.ones(x.shape)
	

#print(ActivationFunc().getActivation('logistic')(1.0))
#print(logistic_derivative(1.0))
class NNetwork:
	def __init__(self, inputsize, lr = 0.001, withbias = True, optimizer = 'adam', allzero = False) :
		self.para = []
		self.layerout = []
		self.grad = []
		self.backout = []
		
		self.allzero = allzero
		self.activationclass = ActivationFunc()
		self.inputsize = inputsize
		self.outputsize = inputsize
		self.lastsize = inputsize
		self.lr = lr
		self.layerlen = 0
		self.activation = []
		self.deactivation = []
		self.wbias = withbias
		self.outputfunc = 'softmax'
		self.maxnum = 0.001
		self.bstep = 0

		self.belta1 = 0.7
		self.belta2 = 0.7
		self.alphat = 1.0
		self.Eg = None
		self.m = None
		self.moutput = None
		self.tmpgrad = None
		self.test = 0
		if optimizer == 'adam':
			#print('optimized with adam')
			self.stepfunc = self.adamstep
		else:
			#print('optimized with std')
			self.stepfunc = self.stdstep
		#self.activation = ActivationFunc().getActivation(mactivation)
		
	
	def add(self, densesize, actstr):
		tsize = self.lastsize
		if self.wbias:
			tsize += 1
		if not self.allzero:
			self.para.append(np.random.rand(densesize, tsize) * 2 - 1)
		else:
			self.para.append(np.zeros((densesize, tsize)) * 2 - 1)
		self.grad.append(np.zeros((densesize, tsize)))
		
		self.lastsize = densesize
		self.activation.append(self.activationclass.getActivation(actstr))
		self.deactivation.append(self.activationclass.getDActivation(actstr))
		self.layerlen += 1
		self.outputfunc = actstr
		self.outputsize = densesize

	def forward(self, input):
		self.layerout = []
		if self.wbias:
			self.layerout.append(np.append(np.array(input), 1))
		else:
			self.layerout.append(np.array(input))
		for i in range(self.layerlen):
			#print(self.layerout[-1].shape, self.para[i].shape)
			if self.wbias and i != self.layerlen - 1:
				self.layerout.append(np.append((self.activation[i](np.dot(self.para[i], self.layerout[-1].T).clip(-5000,5000))).clip(-5000,5000), 1))
			else:
				self.layerout.append((self.activation[i](np.dot(self.para[i], self.layerout[-1].T).clip(-5000,5000))).clip(-5000,5000))
		self.moutput = np.copy(self.layerout[-1])
		return self.moutput

		
	def backward(self, y, y_label = 0):
		self.maxnum = 0.001
		self.bstep += 1
		tsumy = sum(y)
		if self.outputfunc == 'softmax':
			y[y_label] -= tsumy
			y /= max(1e-4, tsumy)
		#self.maxnum = max(self.maxnum, max(y))
		self.backout = []
		self.backout.append(np.matrix(y).T)

		for i in range(self.layerlen, 0, -1):
			#print(self.backout[-1].shape, np.matrix(self.layerout[i - 1]).shape)
			self.grad[i - 1] += np.dot(self.backout[-1], np.matrix(self.layerout[i - 1])).clip(-5000,5000)
			self.grad[i - 1].clip(-5000,5000)
			self.maxnum = max(np.abs(self.grad[i - 1]).max().max(), self.maxnum)
			if i > 1:
				if self.wbias:
					self.backout.append(np.multiply(self.deactivation[i - 2](self.layerout[i - 1]), np.dot(self.backout[-1].T, self.para[i - 1])).T[:-1,:].clip(-5000,5000))
				else:
					self.backout.append(np.multiply(self.deactivation[i - 2](self.layerout[i - 1]), np.dot(self.backout[-1].T, self.para[i - 1])).T.clip(-5000,5000))
			else:
				self.backout.append(np.dot(self.backout[-1].T, self.para[i - 1]).clip(-5000,5000))

	def backwardr(self, y):
		self.maxnum = 0.001
		self.bstep += 1
		self.backout = []
		self.backout.append(np.matrix(self.deactivation[-1](self.moutput) * y).T.clip(-5000,5000))

		for i in range(self.layerlen, 0, -1):
			self.grad[i - 1] += np.dot(self.backout[-1], np.matrix(self.layerout[i - 1])).clip(-5000,5000)
			self.maxnum = max(np.abs(self.grad[i - 1]).max().max(), self.maxnum)
			if i > 1:
				if self.wbias:
					self.backout.append(np.multiply(self.deactivation[i - 2](self.layerout[i - 1]), np.dot(self.backout[-1].T, self.para[i - 1])).T[:-1,:].clip(-5000,5000))
				else:
					self.backout.append(np.multiply(self.deactivation[i - 2](self.layerout[i - 1]), np.dot(self.backout[-1].T, self.para[i - 1])).T.clip(-5000,5000))
			else:
				self.backout.append(np.dot(self.backout[-1].T, self.para[i - 1]).clip(-5000,5000))
			if np.abs(self.backout[-1]).max() < 1e-6 and self.test < 1:
				print(self.layerout[i - 1], self.para[i - 1], self.backout[-2].T)
				self.test += 1
				
	def zero_grad(self):
		for obj in self.grad:
			obj.fill(0)
		self.maxnum = 0.001
		self.bstep = 0

	def step(self, maxinum  = None):
		self.stepfunc(maxinum)

	def stdstep(self, maxinum = None):
		if maxinum == None:
			maxinum = self.maxnum
		for obj1, obj2 in zip(self.para, self.grad):
			obj1 -= (self.lr * obj2  * self.bstep)
		self.zero_grad()
	
	def adamstep(self, maxinum = None):
		if maxinum == None:
			maxinum = self.maxnum
		self.belta2 = min(0.9, self.belta2 * 1.01)
		self.belta1 = min(0.9, self.belta1 * 1.01)
		if self.Eg != None:
			self.Eg = (1 - self.belta2) * maxinum + self.belta2 * self.Eg 
			for obj1, obj2 in zip(self.m, self.grad):
				obj1 = (1 - self.belta1) * obj2 + self.belta1 * obj1
		else:
			self.Eg = maxinum
			self.m = self.grad
		te = self.Eg / (1 - np.power(self.belta2, self.alphat))
		tm = [obj / (1 - np.power(self.belta1, self.alphat)) for obj in self.m]
		for obj1, obj2 in zip(self.para, self.m):
			obj1 -= (self.lr * obj2 / max(te, 0.01) * self.bstep)
		self.zero_grad()

	def predict(self, input):
		y = self.forward(input)
		y /= np.sum(y)
		return y


class Qsa:
	def __init__(self, nn1, nn2, lr =  0.1):
		self.nn1 = nn1
		self.nn2 = nn2
		self.inputsize = nn1.outputsize + nn2.outputsize
		self.w = 2 * np.random.rand(self.inputsize + 1) -1
		self.grad = np.zeros(self.inputsize + 1)
		self.moutput = None
		self.maxnum = 0
		self.lr = lr
		self.bstep = 0
		self.test = 0

	def forward(self, input1, input2):
		self.moutput = np.dot(np.append(np.append(self.nn1.forward(input1), self.nn2.forward(input2)),1), self.w).clip(-5000,5000)
		return self.moutput

	def backward(self, delta):
		self.grad[:self.nn1.outputsize] += (delta * self.nn1.moutput).clip(-5000,5000)
		self.grad[-self.nn2.outputsize-1: -1] += (delta * self.nn2.moutput).clip(-5000,5000)
		self.grad[-1] += delta
		self.nn1.backwardr((delta * self.w[:self.nn1.outputsize]).clip(-5000,5000))
		self.nn2.backwardr((delta * self.w[-self.nn2.outputsize - 1: -1]).clip(-5000,5000))
		self.maxnum = np.abs(self.grad).max()
		self.maxnum = max(self.maxnum, self.nn1.maxnum)
		self.maxnum = max(self.maxnum, self.nn2.maxnum)
		self.bstep += 1
	
	def step(self):
		self.w -= (self.lr * self.grad) * self.bstep
		self.grad.fill(0)
		self.nn1.stdstep(self.maxnum)
		self.nn2.stdstep(self.maxnum)
		#print(self.maxnum)
	
	def getAgrad(self):
		tmp = np.copy(self.nn2.backout[-1])
		ret = tmp.reshape(self.nn2.inputsize+1)[:self.nn2.inputsize]
		return ret


class MActor:
	def __init__(self, ssize, asize, actionlow, actionhigh, moptimizer = 'adam', mlr = 0.001):
		self.net = NNetwork(ssize, optimizer = moptimizer, lr = mlr)
		self.net.add(16,  'relu')
		self.net.add(32,  'relu')
		self.net.add(asize,  'sigmoid')
		self.actionlow = actionlow
		self.actionhigh = actionhigh
		self.actionrange = self.actionhigh - self.actionlow

	def forward(self, input1):
		return self.actionlow + self.actionrange * self.net.forward(input1)

	def backward(self, delta1):
		self.net.backwardr(delta1 * self.actionrange)
		
	def step(self):
		#print('learnt from experience')
		self.net.step()

class MCritic:
	def __init__(self, ssize, asize):
		self.Snet = NNetwork(ssize, optimizer = 'std', lr = 0.1, allzero = False)
		self.Snet.add(32, 'relu')
		self.Anet = NNetwork(asize, optimizer = 'std', lr = 0.1, allzero = False)
		self.Anet.add(32, 'relu')
		self.net = Qsa(self.Snet, self.Anet)

	def forward(self, minput1, minput2):
		return self.net.forward(minput1, minput2)

	def backward(self, merror):
		self.net.backward(merror)		
		
	def getAgrad(self):
		return self.net.getAgrad()

	def step(self):
		self.net.step()	
		


#2*x + y - 3
if __name__ == "__main__":
	model = NNetwork(2, withbias = True, lr = 0.001, optimizer = 'adam')
	model.add(16, 'relu')
	model.add(8, 'relu')
	model.add(2, 'softmax')
	
	data = pd.read_csv('data.csv').astype('float64').sample(frac=1)
	datalen = len(data)
	data_train = data.iloc[:int(datalen*0.9),:]
	data_test = data.iloc[int(datalen*0.9):,:]
	X_train = data_train.iloc[:,:2]
	y_train = data_train.iloc[:,2].astype('int')
	X_test = data_test.iloc[:,:2]
	y_test = data_test.iloc[:,2].astype('int')
	len_train = len(X_train)
	#print(X_train.dtype)
	for i in range(400000):
		tid = i % len_train
		#print(X_train.iloc[tid])
		output = model.forward(X_train.iloc[tid])
		model.backward(output, y_train.iloc[tid])
		if tid == len_train - 1:
			model.step()
	pres = []
	for ind, val in X_test.iterrows():	
		pres.append(np.argmax(model.predict(val)))
	res1 = np.array(pres)
	res2 = np.array(y_test)
	print(res1)
	print(res2)
	'''
	X = [[0,0],[0,1],[1,0],[1,1]]
	y = [0, 1, 1, 0]
	
	for i in range(200000):
		tid = i % 4
		#model.zero_grad()
		output = model.forward(X[tid])
		model.backward(output, y[tid])
		if tid == 3: 
			model.step()


	print(model.predict([1,1]))
	print(model.predict([0,1]))
	print(model.predict([0,0]))
	print(model.predict([1,0]))
	'''

下面是Agent, 论文后面的软更新也没有实现,直接硬更新的,由于对这个算法的理解比较虚也啥效果都没有实现,所以不知道这两段代码里面有一个两个三个或者四个错误,但我估计是网络初始参数w太小,这个应用我也没有实现用adam优化器版本,感觉用那个可能效果会好点,后面调了一下发现中间层有数据溢出,clip以后运行效果还是不大理想

import numpy as np
import os
import pandas as pd
from quad_controller_rl.agents.base_agent import BaseAgent
from quad_controller_rl.agents.ounoise import OUNoise
from quad_controller_rl.agents.replay_buffer import ReplayBuffer
from quad_controller_rl import util
#import quad_controller_rl.agents.qpisa as QPISA 
from quad_controller_rl.agents.qpisa import MActor,MCritic
class DIYAgent(BaseAgent):
	"""Reinforcement Learning agent that learns using DDPG."""
	def __init__(self, task):
		...
		# Task (environment) information
		self.task = task  # should contain observation_space and action_space
		self.state_size = np.prod(self.task.observation_space.shape)
		self.state_range = self.task.observation_space.high - self.task.observation_space.low
		self.action_size = np.prod(self.task.action_space.shape)
		self.action_range = self.task.action_space.high - self.task.action_space.low

		# Actor (Policy) Model
		
		self.action_low = self.task.action_space.low[:3]
		self.action_high = self.task.action_space.high[:3]
		self.actor_local = MActor(self.state_size, 3, self.action_low, self.action_high)

        # Critic (Value) Model
		self.critic_local = MCritic(self.state_size, 3)

        # Initialize target model parameters with local model parameters
        #self.critic_target.model.set_weights(self.critic_local.model.get_weights())
        #self.actor_target.model.set_weights(self.actor_local.model.get_weights())

        # Noise process
		self.noise = OUNoise(self.action_size, mu = np.array([0, 0, 0, 0, 0, 0]))

        # Replay memory2
		self.buffer_size = 100000
		self.batch_size = 64
		self.memory = ReplayBuffer(self.buffer_size)

        # Algorithm parameters
		self.gamma = 0.99  # discount factor
		self.tau = 0.01  # for soft update of target parameters
		self.last_state = None   
		self.last_action = None  

		self.stats_filename = os.path.join(
util.get_param('out'),"stats_{}.csv".format(util.get_timestamp()))  # path to CSV file
		self.stats_columns = ['episode', 'total_reward']  # specify columns to save
		self.episode_num = 1
		self.total_reward = 0
		print("Saving stats {} to {}".format(self.stats_columns, self.stats_filename))  # [debug]   
		...

	def preprocess_state(self, state):
		"""Reduce state vector to relevant dimensions."""
		return state[0:3]  # position only

	def postprocess_action(self, action):
		"""Return complete action vector."""
		complete_action = np.zeros(self.task.action_space.shape)  # shape: (6,)
        #print(complete_action.shape, action.shape)
		complete_action[0:3] = action[0:3]  # linear force only
		return complete_action

	def write_stats(self, stats):
		"""Write single episode stats to CSV file."""
		df_stats = pd.DataFrame([stats], columns=self.stats_columns)  # single-row dataframe
		df_stats.to_csv(self.stats_filename, mode='a', index=False, header=not os.path.isfile(self.stats_filename)) 

	def step(self, state, reward, done):
		...
		# Choose an action
       		#print('first step')
		action = self.postprocess_action(self.act(state))

        	# Save experience / reward
		if self.last_state is not None and self.last_action is not None:
			self.memory.add(self.last_state, self.last_action, reward, state, done)
		...
		# Learn, if enough samples are available in memory
		if len(self.memory) >= self.batch_size:
			experiences = self.memory.sample(self.batch_size)
			self.learn(experiences)
		self.last_state = state
		self.last_action = action
		self.total_reward += reward
		if done:
			# Write episode stats
			self.write_stats([self.episode_num, self.total_reward])
			self.episode_num += 1
			self.total_reward = 0
		return action
	...

	def act(self, states):
		"""Returns actions for given state(s) as per current policy."""
		states = np.reshape(states, [-1, self.state_size])
		actions = np.zeros(6)
		actions[:3] = self.actor_local.forward(states)
		#print(type(tmp),tmp.shape)
		return actions + self.noise.sample()  # add some noise for exploration

	def learn(self, experiences):
		"""Update policy and value parameters using given batch of experience tuples."""
		# Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.)
		states = np.vstack([e.state for e in experiences if e is not None])
	
		actions = np.array([e.action[:3] for e in experiences if e is not None]).astype(np.float32).reshape(-1, 3)
		rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1)
		dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1)
		next_states = np.vstack([e.next_state for e in experiences if e is not None])

		# Get predicted next-state actions and Q values from target models
		#     Q_targets_next = critic_target(next_state, actor_target(next_state))
		actions_next = []
		for mstate in next_states:
			actions_next.append(self.actor_local.forward(mstate))
	
		Q_targets_next = []
		for mstate, maction in zip(list(next_states), actions_next):
			Q_targets_next.append(self.critic_local.forward(mstate, maction))

		# Compute Q targets for current states and train critic model (local)
		Q_targets = rewards.reshape(len(Q_targets_next)) + self.gamma * np.multiply(np.array(Q_targets_next) , (1 - dones.reshape(len(Q_targets_next))))
		#print(len(states), len(actions), len(Q_targets))
		for i in range(len(states)):
			mstate = states[i]
			maction = actions[i]
			mvalue = Q_targets[i]
			tvalue = self.critic_local.forward(mstate, maction)
			self.critic_local.backward(tvalue - mvalue)	
			Agrad = self.critic_local.getAgrad()
			taction = self.actor_local.forward(mstate)
			self.actor_local.backward(-taction.clip(-25, 25) * Agrad)
		#print(tvalue,mvalue)
		print(Agrad)
		self.critic_local.step()
		self.actor_local.step()

 

不过使用Uda官网上的ddpg算法三个都成功了,不过降落(landing)速度有点快,不是说好的gently landing,可能是reward表达式不太好,给速度的惩罚不够大,但是太大又很容易变成hover

 

你可能感兴趣的:(随笔)