DES算法 C语言实现

DES算法C语言实现

算法概述

DES算法是一种对称块加密方法,加密和解密都使用一个长度为64位的密钥。以64位为一个分组长度,对于每个分组,通过置换、Feistel轮函数、子密钥生成等一系列操作,输出一段64位的密文。在解密过程中,更换子密钥输入的顺序,即可解出原本的明文。

总体结构

  1. 对输入的64位密文进行一次IP置换,得到 L 0 R 0 L_0R_0 L0R0
  2. 对IP置换的结果进行16次迭代,迭代的规则为:
    L i = R ( i − 1 ) , R i = L ( i − 1 ) ⨁ f ( R ( i − 1 ) , K i ) L_i = R_(i-1), R_i = L_(i-1) \bigoplus f(R_(i-1),K_i) Li=R(i1),Ri=L(i1)f(R(i1),Ki)
  3. 子密钥的生成以输入的64密钥为基础,经过PC1置换、循环移位和PC2置换等过程生成16个48位的字密钥,依次输入到Feistel函数中。
  4. 16次迭代完成后,将前32位与后32位交换位置,进行一次IP逆置换,得到最终的密文。

代码实现

  • tables.h:定义了DES算法过程用到的所有数组
  • utility.h:所有模块函数的定义与实现
  • main.cpp:处理输入输出。
#pragma once
#include 

int IP_Table[64] = {
	58, 50, 42, 34, 26, 18, 10, 2,
	60, 52, 44, 36, 28, 20, 12, 4,
	62, 54, 46, 38, 30, 22, 14, 6,
	64, 56, 48, 40, 32, 24, 16, 8,
	57, 49, 41, 33, 25, 17, 9, 1,
	59, 51, 43, 35, 27, 19, 11, 3,
	61, 53, 45, 37, 29, 21, 13, 5,
	63, 55, 47, 39, 31, 23, 15, 7 };

int IP_Reverse_Table[64] = {
	40, 8, 48, 16, 56, 24, 64, 32,
	39, 7, 47, 15, 55, 23, 63, 31,
	38, 6, 46, 14, 54, 22, 62, 30,
	37, 5, 45, 13, 53, 21, 61, 29,
	36, 4, 44, 12, 52, 20, 60, 28,
	35, 3, 43, 11, 51, 19, 59, 27,
	34, 2, 42, 10, 50, 18, 58, 26,
	33, 1, 41, 9, 49, 17, 57, 25 };

int Extension_Table[48] = {
	32, 1, 2, 3, 4, 5,
	4, 5, 6, 7, 8, 9,
	8, 9, 10, 11, 12, 13,
	12, 13, 14, 15, 16, 17,
	16, 17, 18, 19, 20, 21,
	20, 21, 22, 23, 24, 25,
	24, 25, 26, 27, 28, 29,
	28, 29, 30, 31, 32, 1 };

int S_Box[8][64] = {
	{
		14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
		0, 15, 7, 4, 15, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
		4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
		15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
	},
	{
		15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
		3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
		0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
		13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
	},
	{
		10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
		13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
		13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
		1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
	},
	{
		7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
		12, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
		10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
		3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
	},
	{
		2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
		14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
		4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
		11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
	},
	{
		12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
		10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
		9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
		4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
	},
	{
		4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
		13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
		1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
		6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
	},
	{
		13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
		1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
		7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
		2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
	}
};


int PC1_Table[56] = {
	57, 49, 41, 33, 25, 17, 9,
	1, 58, 50, 42, 34, 26, 18,
	10, 2, 59, 51, 43, 35, 27,
	19, 11, 3, 60, 52, 44, 36,
	63, 55, 47, 39, 31, 23, 15,
	7, 62, 54, 46, 38, 30, 22,
	14, 6, 61, 53, 45, 37, 29,
	21, 13, 5, 28, 20, 12, 4 };

int PC2_Table[48] = {
	14, 17, 11, 24, 1, 5,
	3, 28, 15, 6, 21, 10,
	23, 19, 12, 4, 26, 8,
	16, 7, 27, 20, 13, 2,
	41, 52, 31, 37, 47, 55,
	30, 40, 51, 45, 33, 48,
	44, 49, 39, 56, 34, 53,
	46, 42, 50, 36, 29, 32
};

int P_Table[32] = {
	16, 7, 20, 21,
	29, 12, 28, 17,
	1, 15, 23, 26,
	5, 18, 31, 10,
	2, 8, 24, 14,
	32, 27, 3, 9,
	19, 13, 30, 6,
	22, 11, 4, 25
};

#pragma once
#include "tables.h"

void charToBit(char * msg, int* msgBit) {
	for (int i = 0; i < 8; i++) {
		for (int j = 0; j < 8; j++) {
			msgBit[(i + 1) * 8 - j - 1] = (msg[i] >> j) & 1;
		}
	}
}

void BitToChar(int* msgBit, char* msg) {
	int sum = 0;
	int count = 0;
	for (int i = 0; i < 64; i++) {
		sum = sum * 2 + msgBit[i];
		if (i % 8 == 7) {
			msg[count++] = sum;
			sum = 0;
		}
	}
}

void IP_Permutation(int* input, int* output) {
	for (int i = 0; i < 64; i++) {
		output[i] = input[IP_Table[i] - 1];
	}
}

void IP_Reverse_Permutation(int* input, int* output) {
	for (int i = 0; i < 64; i++) {
		output[i] = input[IP_Reverse_Table[i] - 1];
	}
}

void devision(int* input, int *L, int* R) {
	for (int i = 0; i < 32; i++) {
		L[i] = input[i];
		R[i] = input[i + 32];
	}
}

void Extension(int* R, int* extendedR) {
	for (int i = 0; i < 48; i++) {
		extendedR[i] = R[Extension_Table[i] - 1];
	}
}

void Xor48(int* R, int* subkey) {
	for (int i = 0; i < 48; i++) {
		if (R[i] != subkey[i]) {
			R[i] = 1;
		}
		else {
			R[i] = 0;
		}
	}
}

void Xor32(int* R, int* subkey) {
	for (int i = 0; i < 32; i++) {
		if (R[i] != subkey[i]) {
			R[i] = 1;
		}
		else {
			R[i] = 0;
		}
	}
}

void SBox(int* input, int start, int* output, int* SBox) {
	int row = input[start] * 2 + input[start + 5];
	int col = 0;
	for (int i = 1; i <= 4; i++) {
		col = col * 2 + input[start + i];
	}
	int result = SBox[row * 16 + col];
	for (int i = 0; i < 4; i++) {
		output[3 - i] = (result >> i) & 1;
	}
}

void P_Permutation(int* input, int* output) {
	for (int i = 0; i < 32; i++) {
		output[i] = input[P_Table[i] - 1];
	}
}

void Feistel(int* R, int* subkey, int* output) {
	int extendedR[48] = { 0 };
	Extension(R, extendedR);
	Xor48(extendedR, subkey);

	int SBoxResult[8][4] = { 0 };
	for (int i = 0; i < 8; i++) {
		SBox(extendedR, i * 6, SBoxResult[i], S_Box[i]);
	}

	//将SBox结果连接起来
	int totalSBox[32] = { 0 };
	for (int i = 0; i < 32; i++) {
		totalSBox[i] = SBoxResult[i / 4][i % 4];
	}
	P_Permutation(totalSBox, output);
}

void leftShift(int* input) {
	int first = input[0];
	for (int i = 0; i < 27; i++) {
		input[i] = input[i + 1];
	}
	input[27] = first;
}

void PC1(int* input, int* key) {
	for (int i = 0; i < 56; i++) {
		input[i] = key[PC1_Table[i] - 1];
	}
}

void PC2(int* input, int* subkey) {
	for (int i = 0; i < 48; i++) {
		subkey[i] = input[PC2_Table[i] - 1];
	}
}

void generateSubkeys(int key[64], int subkeys[16][48]) {
	int pc1[56] = { 0 };
	int pc2[56] = { 0 };
	int C[28] = { 0 };
	int D[28] = { 0 };

	PC1(pc1, key);

	for (int i = 0; i < 28; i++) {
		C[i] = pc1[i];
		D[i] = pc1[i + 28];
	}

	for (int i = 1; i < 17; i++) {
		if (i == 1 || i == 2 || i == 9 || i == 16) {
			leftShift(C);
			leftShift(D);
		}
		else {
			leftShift(C);
			leftShift(C);
			leftShift(D);
			leftShift(D);
		}

		for (int i = 0; i < 28; i++) {
			pc2[i] = C[i];
			pc2[i + 28] = D[i];
		}

		PC2(pc2, subkeys[i - 1]);
	}
}

void Swap(int* L, int * R) {
	int* temp = L;
	L = R;
	R = temp;
}

void DES(int* msgBit, char* key) {

	int keyBit[64] = { 0 };
	int permutationBit[64] = { 0 };        //IP置换后的矩阵
	int L[32] = { 0 };                     //前32位
	int R[32] = { 0 };                     //后32位
	int subkeys[16][48] = { 0 };
	int iterationL[32] = { 0 };            //迭代后的L和R
	int iterationR[32] = { 0 };
	int cryptedMsg[64] = { 0 };

	charToBit(key, keyBit);

	IP_Permutation(msgBit, permutationBit);

	devision(permutationBit, L, R);

	generateSubkeys(keyBit, subkeys);

	//迭代T
	int FeistelResult[32] = { 0 };

	for (int i = 0; i < 16; i++) {

		for (int j = 0; j < 32; j++) {
			iterationL[j] = R[j];
			iterationR[j] = L[j];
		}

		Feistel(R, subkeys[i], FeistelResult);
		Xor32(iterationR, FeistelResult);

		for (int j = 0; j < 32; j++) {
			L[j] = iterationL[j];
			R[j] = iterationR[j];
		}
	}

	//交换L和R的顺序并合并
	int iterationTotal[64] = { 0 }; //迭代后的二进制
	for (int i = 0; i < 32; i++) {
		iterationTotal[i] = iterationR[i];
		iterationTotal[i + 32] = iterationL[i];
	}
	IP_Reverse_Permutation(iterationTotal, cryptedMsg);

	printf("\nThe crypeted message is :\n");
	for (int i = 0; i < 64; i++) {
		printf("%d", cryptedMsg[i]);
	}
}

void Decrypt(int* msgBit, char* key) {
	int keyBit[64] = { 0 };
	int permutationBit[64] = { 0 };        //IP置换后的矩阵
	int L[32] = { 0 };                     //前32位
	int R[32] = { 0 };                     //后32位
	int subkeys[16][48] = { 0 };
	int iterationL[32] = { 0 };            //迭代后的L和R
	int iterationR[32] = { 0 };
	int decryptedBit[64] = { 0 };

	charToBit(key, keyBit);

	IP_Permutation(msgBit, permutationBit);

	devision(permutationBit, L, R);

	generateSubkeys(keyBit, subkeys);

	//迭代T
	int FeistelResult[32] = { 0 };

	for (int i = 0; i < 16; i++) {

		for (int j = 0; j < 32; j++) {
			iterationL[j] = R[j];
			iterationR[j] = L[j];
		}

		Feistel(R, subkeys[15 - i], FeistelResult);
		Xor32(iterationR, FeistelResult);

		for (int j = 0; j < 32; j++) {
			L[j] = iterationL[j];
			R[j] = iterationR[j];
		}
	}

	//交换L和R的顺序并合并。
	int iterationTotal[64] = { 0 };
	for (int i = 0; i < 32; i++) {
		iterationTotal[i] = iterationR[i];
		iterationTotal[i + 32] = iterationL[i];
	}
	IP_Reverse_Permutation(iterationTotal, decryptedBit);

	char decryptedMsg[9] = { 0 };
	BitToChar(decryptedBit, decryptedMsg);
	printf("\nThe decrypeted message is :\n");
	for (int i = 0; i < 8; i++) {
		printf("%c", decryptedMsg[i]);
	}
	printf("\n");
}
#include 
#include 
#include "utility.h"

int main() {
	char msg[9] = { 0 };
	char key[9] = { 0 };

	int msgBit[64] = { 0 };
	
	char cryptedMsg[65] = { 0 };
	int cryptedMsgBit[64] = { 0 };

	printf("Encrypting process\n\n");
	printf("Please enter the message:");
	gets_s(msg);
	printf("Please enter the key:");
	gets_s(key);
	charToBit(msg, msgBit);
	DES(msgBit, key);

	printf("\n\nDecrypting process\n\n");
	printf("Please enter the crypted message:\n");
	gets_s(cryptedMsg);
	for (int i = 0; i < 64; i++) {
		cryptedMsgBit[i] = cryptedMsg[i] - '0';
	}
	printf("Please enter the key:");
	gets_s(key);
	Decrypt(cryptedMsgBit,key);
	system("pause");
	return 0;
}

你可能感兴趣的:(DES算法 C语言实现)