pyTorch基础系列(一)—— 基本语法

 

目录

-1.torch.FloatTensor()

0. repeat

1. Varibale与Tensor的区别(0.4之后已经合并为一类了)

2. 大多数索引 都用LongTensor

3. import导入

4. 创建Tensors

5. 获取Tensor部分值

6. 产生随机数据

7. Tensor运算

8. torch.cat( [res,] x_1, x_2, [dimension] )

9. Tensor维度变型reshaping

10. Computation Graphs and Automatic Differentiation

11. 显示z中所有元素的和 s = z.sum()

12. Deep Learning Building Blocks: Affine maps, non-linearities and objectives

13. Softmax and Probabilitiessoftmax是x_i/sum(x)


 

-1.torch.FloatTensor()元祖也能直接tensor

pyTorch基础系列(一)—— 基本语法_第1张图片

0. repeat

x.repeat(2,3) x的行数复制成原先2倍,列数复制成3倍,遍历循环for的替代。pytorch版本的yolov3中有用到!

    grid = np.arange(grid_size)
    a,b = np.meshgrid(grid, grid)
    x_offset = torch.FloatTensor(a).view(-1,1)#13*13
    y_offset = torch.FloatTensor(b).view(-1,1) 
    x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0)

pyTorch基础系列(一)—— 基本语法_第2张图片

1. Varibale与Tensor的区别(0.4之后已经合并为一类了)

注意:rpn_score是 Variable 而rpn_label刚开始是tensor,因为anchor_target_layer和prosal_layer.py不需要反向传播,了解他们的输入输出这一点很简单,他们本身就是生成rpn_lable 等,做的事情是制定选出的规则,并没有对选出的东西进行计算,所以无需反向传播,所以里面的forward的input都是Tensor,输入的时候都需要 Variable.data, 运算完后的输出再用Variable( Tensor.long())转换回来。

Variable API 几乎和 Tensor API一致 (除了一些in-place方法,这些in-place方法会修改 required_grad=Trueinput 的值)。多数情况下,将Tensor替换为Variable,代码一样会正常的工作。

autograd中支持in-place operations是非常困难的。

所有的Variable都会记录用在他们身上的 in-place operations。如果pytorch检测到variable在一个Function中已经被保存用来backward,但是之后它又被in-place operations修改。当这种情况发生时,在backward的时候,pytorch就会报错。这种机制保证了,如果你用了in-place operations,但是在backward过程中没有报错,那么梯度的计算就是正确的。

2. 大多数索引 都用LongTensor

首先longTensor是64位的长整型。.long()

3. import导入

import torch#基本的torch函数
import torch.autograd as autograd#自动求导
import torch.nn as nn#神经网络类都在这个里面
import torch.nn.functional as F#几乎所有的激励函数
import torch.optim as optim#优化

4. 创建Tensors

#create 1D vector
V_data = [1., 2., 3.]
V = torch.Tensor(V_data)#我用的是pyCharm编辑器,输入torch给的提示没有Tensor函数,其实是有的
print(V)
 1
 2
 3
[torch.FloatTensor of size 3]
#create 2D vector
M_data = [[1., 2., 3.], [4., 5., 6.]]
M = torch.Tensor(M_data)
print(M)
 1  2  3
 4  5  6
[torch.FloatTensor of size 2x3]
#create 3D vector
T_data = [[[1.,2.], [3.,4.]],
          [[5.,6.], [7.,8.]]]
T = torch.Tensor(T_data)
print(T)
(0 ,.,.) = 
  1  2
  3  4

(1 ,.,.) = 
  5  6
  7  8
[torch.FloatTensor of size 2x2x2]

5. 获取Tensor部分值

#我就觉得这里比TensorFlow好用多了QAQ 
print(V[0])
print(M[0])
print(T[0])
1.0

 1
 2
 3
[torch.FloatTensor of size 3]


 1  2
 3  4
[torch.FloatTensor of size 2x2]

6. 产生随机数据

x = torch.randn((3,4,5))
print(x)
(0 ,.,.) = 
  1.4533  0.0593  0.2027 -1.0107 -0.3175
 -0.1847  0.3021  0.0848 -1.2445 -0.5568
 -0.2796 -0.5961 -0.3000 -0.2782  1.4920
  1.4030  1.0875 -0.5814 -1.2006  0.2690

(1 ,.,.) = 
 -0.7093 -0.4939  0.7491  0.9133  0.4221
  1.3949  2.5685 -0.4359 -0.7788  1.0251
  1.6232 -1.2432  0.3403 -1.0551  1.3790
 -1.5632 -0.9772  0.3963 -0.1890  0.0032

(2 ,.,.) = 
 -0.3360 -0.5571 -0.6641 -1.5845 -0.8766
 -0.1809 -1.0035  1.7093  0.9176  1.6438
  1.6955  0.6816  0.5978 -0.1379 -0.3877
  1.0876  1.2371 -0.7378 -0.7647  0.0544
[torch.FloatTensor of size 3x4x5]

7. Tensor运算

x = torch.Tensor([1., 2., 3.])
y = torch.Tensor([4., 5., 6.])
z = x + y
print(z)
 5
 7
 9
[torch.FloatTensor of size 3]

8. torch.cat( [res,] x_1, x_2, [dimension] )

x_1 = torch.randn(2, 5)
y_1 = torch.randn(3, 5)
z_1 =torch.cat([x_1, y_1])#没有最后一个参数,默认是0,则最终维度的第0维度为x_1与y_1第0维度的和,最终维度的其他维度不变.以下同理
print(z_1)

x_2 = torch.randn(2, 3)
y_2 = torch.randn(2, 5)
z_2 = torch.cat([x_2, y_2], 1)
print(z_2)
 0.6372  0.7380  0.9324  0.0626 -0.3678
 1.1819  2.1591  0.2445  0.0064  0.7760
-0.7765 -0.6797  0.1814  0.3948  1.7398
-0.2957 -0.6972  3.7052 -0.1943  0.4159
 0.7385 -0.2365  1.4243 -0.0044 -0.7645
[torch.FloatTensor of size 5x5]


-0.0256 -0.6597 -0.1897  0.4361  0.1680  0.6513 -0.0433 -1.5741
-1.4514  0.0949 -0.7783  0.8568 -0.8722  0.0364 -0.0998  0.9265
[torch.FloatTensor of size 2x8]

9. Tensor维度变型reshaping

x = torch.randn(2, 3, 4)
print(x)
(0 ,.,.) = 
  0.6294 -0.3965  1.3737  1.6951
 -0.5477 -1.5385 -0.0288  0.8104
 -0.4208 -0.4469  0.0184  0.9507

(1 ,.,.) = 
 -0.2843 -0.0695 -0.1747  2.3774
  1.1067  0.1980 -2.0712 -0.0670
 -1.4900  0.0716 -0.7605  0.4611
[torch.FloatTensor of size 2x3x4]```
view转换维数

print(x.view(2,12))#将234 -> 2*12

Columns 0 to 9
0.6294 -0.3965 1.3737 1.6951 -0.5477 -1.5385 -0.0288 0.8104 -0.4208 -0.4469
-0.2843 -0.0695 -0.1747 2.3774 1.1067 0.1980 -2.0712 -0.0670 -1.4900 0.0716

Columns 10 to 11
0.0184 0.9507
-0.7605 0.4611
[torch.FloatTensor of size 2x12]```

print(x.view(2,-1))#-1的话,意味着最后的相乘为维数,这里为2*之后的成绩
#和上面的一样
Columns 0 to 9 
 0.6294 -0.3965  1.3737  1.6951 -0.5477 -1.5385 -0.0288  0.8104 -0.4208 -0.4469
-0.2843 -0.0695 -0.1747  2.3774  1.1067  0.1980 -2.0712 -0.0670 -1.4900  0.0716

Columns 10 to 11 
 0.0184  0.9507
-0.7605  0.4611
[torch.FloatTensor of size 2x12]

10. Computation Graphs and Automatic Differentiation

x = autograd.Variable(torch.Tensor([1., 2., 3]), requires_grad=True)
print(x)
print(x.data)#.data显示具体数据
#找不同
Variable containing:
 1
 2
 3
[torch.FloatTensor of size 3]

 1
 2
 3
[torch.FloatTensor of size 3]
y = autograd.Variable( torch.Tensor([4., 5., 6]), requires_grad=True )
z = x + y
print(z.data)
 5
 7
 9
[torch.FloatTensor of size 3]

.creator是生成器

print(z.creator)
#因为是z = x + y 所以,z运算是add

11. 显示z中所有元素的和 s = z.sum()

s = z.sum()
print(s)
Variable containing:
 21
[torch.FloatTensor of size 1]
s.backward()#反向传播
print(x.grad)#对x求导
Variable containing:
 1
 1
 1
[torch.FloatTensor of size 3]
#答案解释
#x = [1,2,3]
#y = [4,5,6]
#z = x + y = [x0+y0, x1+y1, x2+y2]
#s = z.sum() = x0+y0+x1+y1+x2+y2
#x.grad 在s运算中对x求导   也就是当中的x0,x1,x2求导  为1,1,1 

12. Deep Learning Building Blocks: Affine maps, non-linearities and objectives

Affine maps
也可以说是线性映射,即为f(x) = Ax + b
nn.Linear(inputSize,outputSize,bias=True)
输入(N, inputSize)
输出(N, outputSize)

lin = nn.Linear(5,3)
data = autograd.Variable(torch.randn(2, 5))
print(lin(data))
Variable containing:
-0.1838 -0.1833 -0.6425
 0.2675  0.0263  0.0482
[torch.FloatTensor of size 2x3]

Non-Linearities
非线性,常用的函数有 tanh(x),σ(x),ReLU(x) 这些都是激励函数
在pytorch中大部分激励函数在torch.functional中

data = autograd.Variable( torch.randn(2, 2) )
print(data)
print (F.relu(data))#relu函数是小于零是0,大于零就是它本身
Variable containing:
-2.0620  1.4252
 0.5694  0.2251
[torch.FloatTensor of size 2x2]

Variable containing:
 0.0000  1.4252
 0.5694  0.2251
[torch.FloatTensor of size 2x2]

13. Softmax and Probabilities
softmax是x_i/sum(x)

data = autograd.Variable( torch.randn(5) )
print(data)
print(F.softmax(data))
print(F.softmax(data).sum())
print(F.log_softmax(data))
Variable containing:
 0.6861
 0.1695
-0.4775
-2.0097
 0.7039
[torch.FloatTensor of size 5]

Variable containing:
 0.3340
 0.1992
 0.1043
 0.0225
 0.3400
[torch.FloatTensor of size 5]

Variable containing:
 1
[torch.FloatTensor of size 1]

Variable containing:
-1.0967
-1.6133
-2.2604
-3.7925
-1.0789
[torch.FloatTensor of size 5]



作者:zenRRan
链接:https://www.jianshu.com/p/7593aadab004
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

你可能感兴趣的:(pytorch)