java-数据结构-大顶堆和小顶堆

java-数据结构-大顶堆和小顶堆

概念

1)堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
2)堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
3)每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

大顶堆举例说明

java-数据结构-大顶堆和小顶堆_第1张图片
在这里插入图片描述

大顶堆特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] // i 对应第几个节点,i从0开始编号

小顶堆举例说明

java-数据结构-大顶堆和小顶堆_第2张图片
小顶堆:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应第几个节点,i从0开始编号

一般升序采用大顶堆,降序采用小顶堆

堆排序基本思想

堆排序的基本思想是:
1)将待排序序列构造成一个大顶堆
2)此时,整个序列的最大值就是堆顶的根节点。
3)将其与末尾元素进行交换,此时末尾就为最大值。
4)然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
java-数据结构-大顶堆和小顶堆_第3张图片

package com.tree;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class HeapSort {

	public static void main(String[] args) {
		//要求将数组进行升序排序
		//int arr[] = {4, 6, 8, 5, 9};
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		heapSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		//System.out.println("排序后=" + Arrays.toString(arr));
	}

	//编写一个堆排序的方法
	public static void heapSort(int arr[]) {
		int temp = 0;
		System.out.println("堆排序!!");
		
//		//分步完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//		
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
		
		//完成我们最终代码
		//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for(int i = arr.length / 2 -1; i >=0; i--) {
			adjustHeap(arr, i, arr.length);
		}
		
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
		for(int j = arr.length-1;j >0; j--) {
			//交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j); 
		}
		
		//System.out.println("数组=" + Arrays.toString(arr)); 
		
	}
	
	//将一个数组(二叉树), 调整成一个大顶堆
	/**
	 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
	 * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
	 * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
	 * @param arr 待调整的数组
	 * @param i 表示非叶子结点在数组中索引
	 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
	 */
	public  static void adjustHeap(int arr[], int i, int lenght) {
		
		int temp = arr[i];//先取出当前元素的值,保存在临时变量
		//开始调整
		//说明
		//1. k = i * 2 + 1 k 是 i结点的左子结点
		for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) { 
			if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
				k++; // k 指向右子结点
			}
			if(arr[k] > temp) { //如果子结点大于父结点
				arr[i] = arr[k]; //把较大的值赋给当前结点
				i = k; //!!! i 指向 k,继续循环比较
			} else {
				break;//!
			}
		}
		//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
		arr[i] = temp;//将temp值放到调整后的位置
	}
	
}

你可能感兴趣的:(转载,java,零基础学数据结构)