大数据集群安装系列2:Hadoop HA 模式安装

1,基本环境配置:依赖zookeeper,

请参看zookeeper 的安装:
大数据集群安装系列1:Zookeeper 的安装
欢迎留言哦,欢迎提问。

2,hadoop HA 模式安装

2.1,下载相应的hadoop 安装包,本文是2.7.2, 放到服务器目录下,解压,类似如下:

[root@master /opt/bigdata/component]# pwd
/opt/bigdata/component
[root@master /opt/bigdata/component]# ls
azkaban.tar.gz  GsFaceLib.tar.gz  hadoop.tar.gz         hbase.tar.gz  kafka.tar.gz  spark.tgz            zookeeper
elastic.tar.gz  hadoop            haproxy-1.7.9.tar.gz  hive.tar.gz   rocketmq.zip  zabbix-3.4.6.tar.gz  zookeeper.tar.gz
[root@master /opt/bigdata/component]# 

2.2 配置cores-site.xml:请根据具体提示修改

<configuration>

    
    <property>
    <name>dfs.nameservicesname>
    <value>haclustervalue>
    property>

    
    <property>
    <name>dfs.ha.namenodes.haclustername>
    <value>nn1,nn2value>
    property>

    
    <property>
    <name>dfs.namenode.rpc-address.hacluster.nn1name>
    <value>master:9000value>
    property>

    
    <property>
    <name>dfs.namenode.http-address.hacluster.nn1name>
        <value>master:50070value>
    property>

    
    <property>
           <name>dfs.namenode.rpc-address.hacluster.nn2name>
    <value>workerI:9000value>
    property>

    
    <property>
    <name>dfs.namenode.http-address.hacluster.nn2name>
    <value>workerI:50070value>
    property>

    
    <property>
    <name>dfs.namenode.shared.edits.dirname>
    <value>qjournal://workerII:8485;workerI:8485;master:8485;/haclustervalue>
    property>

    
    <property>
    <name>dfs.journalnode.edits.dirname>
    <value>/opt/bigdata/Hadoop/hadoop/dfs_journalnode_edits_dirvalue>
    property>

    
    <property>
    <name>dfs.ha.automatic-failover.enabledname>
    <value>truevalue>
    property>

    
    <property>
    <name>dfs.client.failover.proxy.provider.haclustername>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvidervalue>
    property>

    
    <property>
    <name>dfs.ha.fencing.methodsname>
    <value>
        sshfence
        shell(/bin/true)
    value>
    property>

    
    <property>
    <name>dfs.ha.fencing.ssh.private-key-filesname>
    <value>/root/.ssh/id_rsavalue>
    property>

    
    <property>
    <name>dfs.ha.fencing.ssh.connect-timeoutname>
    <value>30000value>
    property>

    
    
    
    <property>
        <name>dfs.replicationname>
        <value>3value>
    property>

2.4 配置yarn-site.xml

-->
<configuration>

    
    
    <property>
        <name>yarn.resourcemanager.ha.enabledname>
        <value>truevalue>
    property>

    
    <property>
        <name>yarn.resourcemanager.cluster-idname>
        <value>yrcvalue>
    property>

    
    <property>
        <name>yarn.resourcemanager.ha.rm-idsname>
        <value>rm1,rm2value>
    property>

    
    <property>
        <name>yarn.resourcemanager.hostname.rm1name>
        <value>mastervalue>
    property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2name>
        <value>workerIvalue>
    property>

    
    <property>
        <name>yarn.resourcemanager.zk-addressname>
        <value>workerII:2181,workerI:2181,master:2181,value>
    property>

    <property>
        <name>yarn.nodemanager.aux-servicesname>
        <value>mapreduce_shuffle,spark_shufflevalue>
    property>

    

      
    <property>
        <name>yarn.nodemanager.resource.memory-mbname>
        <value>19000value>
    property>


    <property>
        <name>yarn.scheduler.minimum-allocation-mbname>
        <value>8192value>
    property>


    <property>
        <name>yarn.scheduler.maximum-allocation-mbname>
        <value>19000value>
    property>


    <property>
        <name>yarn.app.mapreduce.am.resource.mbname>
        <value>8192value>
    property>

    <property>
        <name>yarn.app.mapreduce.am.command-optsname>
        <value>-Xmx6553mvalue>
    property>



    <property>
        <name>yarn.resourcemanager.webapp.address.rm1name>
        <value>master:8088value>
    property>

    <property>
        <name>yarn.resourcemanager.webapp.address.rm2name>
        <value>workerI:8088value>
    property>

    
    <property>
        <name>yarn.nodemanager.aux-services.spark_shuffle.classname>
    <value>org.apache.spark.network.yarn.YarnShuffleServicevalue>
    property>
    <property>
    <name>spark.shuffle.service.portname>
    <value>7337value>
    property>

configuration>

2.6 修改yarn-env.sh 和hadoop-env.sh 中java 的路径, 以及配置slaves 节点

export JAVA_HOME=/opt/bigdata/basic/jdk

[root@master /opt/bigdata/component/hadoop/etc/hadoop]# vim slaves 
[root@master /opt/bigdata/component/hadoop/etc/hadoop]# cat slaves 
master
workerI
workerII

2.7 分发文件:

scp -r hadoop workerI:pwd
scp -r hadoop workerII:pwd

3,安装好后,接下来就是启动了

3.1 在master 节点,首先格式化zk(此时请确保zookeeper 已经启动)

在$HADOOP_INSTALL_HOME/bin
./hdfs zkfc -formatZK -force

3.2 启动zkfc(每个节点都需要这样做)

在$HADOOP_INSTALL_HOME/sbin
./hadoop-daemon.sh start zkfc

3.3 启动journalnode(每个节点)

在$HADOOP_INSTALL_HOME/sbin
./hadoop-daemon.sh start journalnode

3.4 格式化hdfs 文件系统

在$HADOOP_INSTALL_HOME/bin
./hadoop namenode -format -force

3.5 在master 节点,进行启动hdfs

在$HADOOP_INSTALL_HOME/sbin
./start-dfs.sh

3.6 启动yarn

在$HADOOP_INSTALL_HOME/sbin
./start-yarn.sh

3.7 在备用节点,启动备用namenode 和 备用resourcemanager

 本文备用节点是workerI
 在HADOOP_INSTALL_HOME/sbin    
 yarn-daemon.sh start resourcemanager
 在$HADOOP_INSTALL_HOME/sbin  
 hdfs namenode -bootstrapStandby$HADOOP_INSTALL_HOME/sbin   
 hadoop-daemon.sh start namenode

3.8 至此,所有hdfs 内容已经启动,具体进程如下:

[root@workerI ~]# jps
1969 WrapperSimpleApp
6961 Jps
5682 JournalNode
5956 DFSZKFailoverController
5527 QuorumPeerMain
5832 DataNode
6057 NodeManager
6203 ResourceManager
[root@workerI ~]# 


[root@master ~]# jps
6560 DFSZKFailoverController
6644 JournalNode
7460 ResourceManager
7112 DataNode
7563 NodeManager
8396 Jps
2076 WrapperSimpleApp
6957 NameNode
6174 QuorumPeerMain


[root@workerII ~]# jps
4067 NodeManager
3923 DataNode
3848 JournalNode
2200 WrapperSimpleApp
4606 Jps
3679 QuorumPeerMain
(请不要在一JpsWrapperSimpleApp 这两个不需要关注 )

你可能感兴趣的:(大数据安装)