代码链接:
from numpy import *
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
m = len(fr.readline().split('\t'))
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = []
for i in range(m):
fltLine.append(float(curLine[i]))
dataMat.append(fltLine)
return dataMat
# 向量欧式距离计算
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2)))
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k, n)))
for j in range(n): # 构建簇质心
minJ = min(dataSet[:, j])
rangeJ = float(max(dataSet[:, j]) - minJ)
centroids[:, j] = minJ + rangeJ * random.rand(k, 1)
return centroids
# k簇数目, distMeas距离计算,createCent质心创建函数
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m, 2)))
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j, :], dataSet[i, :])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i, 0] != minIndex: clusterChanged = True
clusterAssment[i, :] = minIndex, minDist ** 2
print(centroids)
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]]
centroids[cent, :] = mean(ptsInClust, axis=0)
return centroids, clusterAssment
def biKmeans(dataSet, k, disMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m, 2)))
# axis=0 表示往列方向
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList = [centroid0]
for j in range(m):
clusterAssment[j, 1] = disMeas(mat(centroid0), dataSet[j, :]) ** 2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :]
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, disMeas)
sseSplit = sum(splitClustAss[:, 1])
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1])
print("sseSplit , and notSplit: ", sseSplit, sseNotSplit)
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList) # 新加簇编号
bestClustAss[nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit
print("the bestCentToSplit is:", bestCentToSplit)
print("the len of bestClustAss is:", len(bestClustAss))
centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0]
centList.append(bestNewCents[1, :].tolist()[0])
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss
return mat(centList), clusterAssment
import urllib.parse
import urllib.request
import json
def geoGrab(stAddress, city):
apiStem = 'http://api.map.baidu.com/geocoder/v2/?'
params = {}
params['output'] = 'json'
params['ak'] = 'PzzYE3did4G1ymcM57TOB9GkzCpIdlOO'
params['address'] = '%s %s' % (stAddress, city)
url_params = urllib.parse.urlencode(params)
baiduApi = apiStem + url_params
print(baiduApi)
c = urllib.request.urlopen(baiduApi)
return json.loads(c.read().decode())
from time import sleep
def massPlaceFind(fileName):
fw = open('places.txt', 'w')
for line in open(fileName).readlines():
line = line.strip()
lineArr = line.split('\t')
retDict = geoGrab(lineArr[1], lineArr[2])
if retDict['status'] == 0:
lat = float(retDict['result']['location']['lat'])
lng = float(retDict['result']['location']['lng'])
print("%s\t%f\t%f" % (line, lat, lng))
fw.write('%s\t%f\t%f\n' % (line, lat, lng))
else:
print("error fetching")
sleep(1)
fw.close()
def distSLC(vecA, vecB):
a = sin(vecA[0, 1] * pi / 180) * sin(vecB[0, 1] * pi / 180)
b = cos(vecA[0, 1] * pi / 180) * cos(vecB[0, 1] * pi / 180) \
* cos(pi * (vecB[0, 0] - vecA[0, 0]) / 180)
return arccos(a + b) * 6371.0
import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
print(datMat)
myCentroids, clustAssing = biKmeans(datMat, numClust, distSLC)
fig = plt.figure()
rect = [0.1, 0.1, 0.8, 0.8]
scatterMarkers = ['s', 'o', '^', '8', 'p', 'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0 = fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1 = fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:, 0].A == i)[0], :]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:, 0].flatten().A[0], ptsInCurrCluster[:, 1].flatten().A[0],
marker=markerStyle, s=90)
ax1.scatter(myCentroids[:, 0].flatten().A[0], myCentroids[:, 1].flatten().A[0], marker='+', s=300)
plt.show()