基于深度学习模型Wide&Deep的推荐

本实验选用数据为UCI开源数据集,仅用于学习,请勿商用)

Wide&Deep推荐算法出自一篇论文《Wide&Deep Learning for RecommenderSystems》,Wide&Deep由两部分组成,分别是Wide和Deep。先来说wide,表示的是generalized的推荐系统,传统的推荐系统都是通过线性算法基于离散特征来做推荐的。Wide推荐通常是这样的:系统通过获得用户的购物日志数据,包括用户点击哪些商品,购买过哪些商品,然后通过one-hot编码的方式构成离散特征或者通过对业务的理解衍生出一些特征,并进行计算,类似于本系列文章第二篇。这种wide推荐方式有非常多的好处,比如对于大规模的稀疏数据有很好的效果,而且模型的解释性很强。什么叫模型的解释性呢?以逻辑回归为例,每个特征都对应模型中的一个权重值,每个特征的权重值的大小跟这个特征对结果的影响是有关的。那么wide方式同样有很多缺点,比如我们一直强调的,特征衍生需要很多人为操作,需要专家经验,另外这种推荐只对用户操作过的商品有效。

接着讲下deep,这里的deep表示的是通过深度学习学习出来的一些向量,这些向量是隐性特征,往往是没有明确可解释性的。这些向量也可以作为特征的一部分参与到训练中。通过deep方式产生的特征会有以下好处,其一可以拟补人为提取特征造成的人力思考维度的限制,试想下一个人可以轻易的思考出二阶乘法的结果,如果是五阶呢?其二这部分特征是深度学习框架自动生成的,无需人力干预。

既然Wide和Deep算法各有千秋,那如果可以将两种算法作为组合,那么一定可以生成更有效的推荐场景的模型,本文就介绍如何在PAI-DSW上实现基于Wide&Deep的预测。

一、业务场景描述

本节使用的是PAI-DSW云端深度学习训练平台和PAI-EAS模型服务平台,使用的是一份开源的基于人的各种背景的统计数据,解决的问题是基于人的各种基础数据预测每个人收入是否会超过50K。

本实验的全部代码和数据已经内置于PAI-DSW,只要打开DSW就可以安装下方的教程运行实验。

二、数据集介绍

数据源:引用UCI开源数据源,https://archive.ics.uci.edu/ml/datasets/Census+Income
具体特征字段如下:

字段名 含义 类型 描述
age 对象年龄 double 对象的年龄大小
workclass 工作性质 string 自由职业者、私企、企业人员、政府工作者、无业游民等
fnlwgt 连续数据 double -
education 学历 string 学士、说是、博士、11th、10th、1s-4th等等
education-num 教育年限 double 教育年限
marital-status 婚姻状况 string 单身、未婚、离异等等
occupation 职业 string 工程师、农民、销售等等
relatonship 家庭角色 string 妻子、父亲、没家庭等等
race 人种 string 亚裔、白人、黑人等等
sex 性别 string 女性、男性
capital-gain 连续数据 double -
capital-loss 连续数据 double -
hours-per-week 连续数据 double -
native-country 祖籍国家 string 美国、哥伦比亚、英格兰、加拿大等等

目标字段:income是否超过50k

三、数据探索流程

首先进入PAI-DSW,找到左侧的Demo文件夹,下载Wide&Deep数据集及代码包。

(1)工程描述

首先看下整个工程,

  • 包含一个census_data文件夹,里面包含一个训练数据和一个测试数据
  • official文件夹是一个工具包
  • census_main.py为训练脚本

(2)训练模型

打开一个terminal环境,执行

python census_main.py --export_dir wide_deep_saved_model

wide_deep_saved_model为输出模型所在的文件夹,训练完在文件目录下会找到相应文件,打开后可以看到checkpoint:

把这个checkpoint的号记住。

(3)模型预测

现在已经生成了模型的checkpoint输出,接下来进入terminal,运行以下脚本:

saved_model_cli run --dir wide_deep_saved_model/${模型checkpoint号码}/ --tag_set serve --signature_def="predict" --input_examples='${预测数据}'

根据本文的案例可以执行以下脚本拿到预测结果:

saved_model_cli run --dir wide_deep_saved_model/1542168326/ --tag_set serve --signature_def="predict" --input_examples='examples=[{"age":[46.], "education_num":[10.], "capital_gain":[7688.], "capital_loss":[0.], "hours_per_week":[38.]}, {"age":[24.], "education_num":[13.], "capital_gain":[0.], "capital_loss":[0.], "hours_per_week":[50.]}]'

输入了两条预测数据,最终拿到预测结果:

输入了两条预测数据,可以得到预测输出,第一条预测结果为1,第二条结果为0,可以通过output key probabilities判断(注:矩阵第一行对应第一个预测结果,第二列0.9599956>第一列0.04000434,所以第一个预测结果是1。同理第二个预测结果是0)。

可以通过代码official/wide_deep/census_dataset.py来看具体的特征工程的特征和目标值的构建,目标列>50k时目标值为1,目标列<50k时目标值为0。

于是预测结果第一条的人的预测收入为>50k,预测结果第二条的人的预测收入<50k。

(4)模型在线部署

生成的模型是Tensorflow的标准模型格式,可以通过PAI-EAS将模型部署成Http服务供调用。

后续流程可以参考在线预测文档:https://help.aliyun.com/document_detail/92917.html

部署成在线服务之后,这样就可以做到模型跟用户自身的业务结合,完成PAI模型训练和业务应用的打通。



本文作者:傲海

阅读原文

本文为云栖社区原创内容,未经允许不得转载。

你可能感兴趣的:(推荐系统,脚本,机器学习,算法,深度学习)