- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 【面试题】为什么kafka的吞吐量这么高
oraen
面试系列kafka分布式
我们总结一下为什么kafka的吞吐量高核心:顺序写+零拷贝+批处理一数据模型简单+顺序读写磁盘1kafka的数据存储本质上使用的是Append-only日志模型,数据写入和读取是顺序的,不需要复杂索引或随机写,大大简化了写路径,2消息以顺序追加方式写入磁盘,避免了随机写,而且顺序写入能够更高效地配合操作系统的页缓存,进一步提升写的性能。3消息的消费也是顺序读取的,顺序读取硬盘数据再配合内存映射大大
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- 如何解决Ubuntu服务器拉取github代码失败
徐方芳
github
使用gitclone拉取GitHub代码时出现以下错误:fatal:unabletoaccess'https://github.com/XXX':Failedtoconnecttogithub.comport443after133795ms:Connectiontimedout通过查找资料,找到解决办法,可以通过运行以下代码解决:gitconfig--global--unsethttp.proxy
- fac-via-ppg 项目使用教程
fac-via-ppg项目使用教程fac-via-ppgForeignAccentConversionbySynthesizingSpeechfromPhoneticPosteriorgrams(Interspeech'19)项目地址:https://gitcode.com/gh_mirrors/fa/fac-via-ppg1.项目目录结构及介绍fac-via-ppg/├──data/│└──fi
- 扩散模型中的 Transformer:图像生成及其延展应用询问 ChatGPT
DeepSeek大模型官方教程
transformerchatgpt深度学习自然语言处理人工智能ai大模型学习
扩散模型近年来在生成逼真但合成的连续媒体内容方面引起了广泛关注。本次演讲将介绍Transformer在图像生成的扩散模型中的应用,并进一步探讨其更广泛的前景。我们首先简要介绍扩散模型的基础知识以及它们的训练方式,从而建立基本背景。接着,我们讲解曾是扩散模型事实标准的基于UNet的网络架构,这将帮助我们理解引入Transformer架构并推动其发展的动因。随后,我们将深入探讨构成基础架构的核心模块,
- STM32之有源蜂鸣器模块
如愿小李单片机设计
单片机嵌入式硬件stm32
目录一、系统概述二、无源蜂鸣器模块简介2.1基本概念与工作原理2.2与无源蜂鸣器对比2.3关键电气参数2.4硬件驱动设计2.5选型与使用注意事项三、硬件设计3.1硬件组成3.2硬件连接四、软件设计4.1开发环境配置4.2关键代码实现4.2.1GPIO初始化4.2.2蜂鸣器控制函数4.2.3报警模式实现五、注意事项5.1驱动电路必须使用三极管5.2电压匹配5.3保护措施5.4电流消耗六、总结一、系统
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【scl】博图程序的导入和导出
peace..
西门子1200windows经验分享学习其他
导入或者导出博图文件的方法(也叫移植文件)目录前言编辑编辑前言本篇文章主要写一下关于博图文件的导入和导出,具体要怎么样才能将写好的程序或者块移植到其他地方,下面我们一起来看!一、程序块的导入和导出程序块包含FC块,FB块;注意:需要是SCL语言编写的程序块才可以导出源文件!导出步骤:找到要导出的程序块---->右键单击----->选择从块生成源---->可以选着一个块或关联块---->将文件保存-
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- STM32串口DMA方式向上位机连续发送接收数据
Justinlevy
stm32单片机arm
目录一、DMA初步应用1、DMA含义2、DMA传输四要素3、使用区别4、DMA的应用场景5、DMA传输方式6、DMA中断二、创建项目1、STM32CubeMX创建1.1设置SYS1.2设置RCC1.3设置USART1.4DMA设置1.5时钟设置1.6文件配置2、KEIL代码配置2.1main.c文件代码2.2while循环中代码2.3编译烧录2.4运行结果三、DMA总结四、参考一、DMA初步应用1
- 笔记本屏幕亮度忽明忽暗是怎么回事?
当你正在沉浸在写代码、编辑文档或者观看影片的时候,笔记本屏幕突然变暗,或者瞬间又变得刺眼,这不仅打断了你的专注,还可能对眼睛造成伤害。这种屏幕亮度的忽明忽暗,往往令人不悦,也引发了对电脑硬件或软件出现问题的担忧。那么,为什么会出现这种情况呢?更重要的是,我们该如何解决这一问题呢?在本文中,我将与大家分享笔记本屏幕亮度不稳定的可能原因及相应的解决方法,希望能够帮助你迅速恢复屏幕的正常亮度,让你的工作
- .NET9 实现 JSON 序列化和反序列化(Newtonsoft.Json & System.Text.Json)性能测试
为了在.NET9平台上对比Newtonsoft.Json和System.Text.Json的序列化与反序列化的性能,我们可以使用BenchmarkDotNet来进行压测。目录1.项目准备2.基准测试环境3.性能对比a.对象级别的序列化(Object-LevelSerialization)b.对象级别的反序列化(Object-LevelDeserialization)c.API响应级别的序列化(Ap
- .NET9 实现字符串拼接(StringConcatenation)性能测试
ChaITSimpleLove
.NET跨平台.netstring拼接字符串拼接性能测试BenchmarkTestcsharp
为了评估.NET9平台上使用C#中不同字符串拼接操作的性能表现,我们可以使用BenchmarkDotNet这一强大的开源库来构建科学且可重复的基准测试。BenchmarkDotNet能够自动处理诸如JIT编译、预热(Warm-up)、运行次数控制、统计误差分析等底层细节,确保测试结果具有高度准确性与可比性。在.NET9中,使用C#字符串拼接的常见方式包括:使用+运算符使用string.Concat
- Python实现布林带策略完整代码
程序化交易助手
量化软件Python程序化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
Python实现布林带策略完整代码布林带是个啥玩意儿?我见过太多新手一上来就问"布林带能不能赚钱",这问题就跟问"菜刀能不能切菜"一样。布林带就是个工具,关键看你怎么用。简单来说,它就是在均线上下画两条通道线,股价大部分时间都在这个通道里晃悠。记得去年有个客户,拿着布林带当圣杯,结果亏得妈都不认识。后来我给他看了我的Python策略代码,这哥们才明白原来工具要配合仓位管理和止损。现在他账户已经翻倍
- 同花顺复权怎么设置?股价真实走势还原!
同花顺复权怎么设置?股价真实走势还原!复权是什么?为什么炒股必须懂这个?很多新手打开股票软件,看到贵州茅台从几十块涨到上千块,第一反应是"哇,这股票涨了上百倍!"但如果你看的是不复权的价格,这个结论就大错特错了。复权就是把股票历史上的分红、送股、配股等因素考虑进去,还原股价的真实走势。比如一只股票现在价格是10元,去年10送10(每10股送10股),那么去年这个时候的实际股价应该是20元,而不是软
- 订单分析指标
weixin_30340775
1.用户消费分析累计积分可用积分已用积分首单时间首单地址首单来源首单省份首单城市首单地区最近一次收获省份最近一次收获地区常用一次收获省份常用一次收获地区最近一次使用手机号码常用手机号码常用手机号运营商不同手机号数最近一次邮箱常用邮箱常用邮箱运营商不同邮箱数最近一次收获地址累计代金券数量累计代金券金额可用代金券数量可用代金券金额已用代金券数量已用代金券金额过期代金券数量过期代金券金额月度新老客户新/
- 《王者荣耀》游戏优化的AI革命:从性能提升到生态治理
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总人工智能笔记学习深度学习游戏
目录:AI技术进化历程:使用时间轴和表格介绍“绝悟”AI从基础操作到职业水平的成长过程,以及“开悟”平台的技术外溢效应。性能优化策略:通过终端适配方案表格,分析预计算烘焙、多线程优化等技术如何解决亿级用户的设备兼容问题。游戏环境治理:列举AI接管、违规检测等机制如何应对挂机、摆烂等破坏公平性的行为。产业技术外溢:说明游戏AI如何向智能制造、自动驾驶等领域输出协作决策模型。伦理争议:探讨“超规格能力
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- 多核CPU如何实现数据共享与通信
你一身傲骨怎能输
操作系统多核通信机制
文章摘要多核CPU中core1和core2通过共享内存和缓存一致性协议实现数据共享,通过读写同一内存区域交换数据,并使用MESI等协议保证缓存一致性。操作系统提供的同步原语(如锁)和核间中断(IPI)辅助协调核心间的通信与同步。这些机制共同确保了多核之间的高效数据共享和通信。多核CPU中,core1和core2之间间接实现数据共享和通信的主要机制有:1.共享内存(SharedMemory)多个核心
- 使用oracle序列
创建序列:CREATESEQUENCEXXXXX_SEQUENCE使用序列:selectXXXXX_SEQUENCE.nextvalfromdual
- 会话对象 Cookie 四、Cookie的路径
best_virtuoso
会话前端前端
1.Cookie的path属性Cookie还有一个path属性,可以通过Cookie#setPath(String)方法来设置。你可以使用HttpWatch查看响应中的Set-Cookie中是否存在路径。下面是通过Chrome查看Cookie信息。也就是说,就算你不设置Cookie的path,Cookie也是有路径的。这个路径就是请求的路径。例如在请求:http://localhost:8080/
- 【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
xumistore
LeetCodeleetcode算法职场和发展java
Problem:48.旋转图像题目:给定一个n×n的二维矩阵matrix表示一个图像。请你将图像顺时针旋转90度。你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。文章目录整体思路完整代码时空复杂度时间复杂度:O(N^2)空间复杂度:O(1)整体思路这段代码旨在解决一个经典的矩阵问题:旋转图像(RotateImage)。问题要求将一个NxN的二维矩阵顺时针
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- mac 安装HomeBrew并且使用nvm管理node
一只小忆白
macoslinux运维
1.安装Homebrew:如果您还没有安装Homebrew,首先需要安装它。打开终端(Terminal.app)并运行以下命令:(官网地址:brew.sh/zh-cn/)http://brew.shbrew.sh/zh-cn/)安装指令:1.官网提供的链接(没有的话执行不成功)/bin/bash-c"$(curl-fsSLhttps://raw.githubusercontent.com/Home
- 单按钮动画
本文仅仅自己备份使用html☀️//currentTheme是light和dark//switchTheme是切换主题逻辑import{currentTheme,switchTheme,}from"../utils/theme"consthandleClick=(event)=>{if(!document.startViewTransition){switchTheme()return}const
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- 前端上传解析Excel;前端解析excel
i_am_a_div_日积月累_
yarn安装和插件前端excel前端上传Excel文件前端解析Excelxlsx
注意:这里是前端使用xlsx插件,将前端上传的.xls、.xlsx文件,解析得到原始列表数据我的是vue3项目文章目录1.安装依赖2.组件封装3.子组件使用1.安装依赖
[email protected].组件封装src/components/MyExcelData/index.vue{{props.msg}}import{defineProps}from'vue'import{UploadFi
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><