分析下锂电池,及其能量密度

阅读更多
近来在做四轴,感慨于电池的无奈。我所用的电池有两个,都是11.1V(3S),2200mAh,170克,价格约100元。折合的能量密度是142Wh/Kg。倒是符合一般锂电池能量密度的范畴,即100~150Wh/Kg。

但是这么个电池,也就可以飞15~20分钟,很是无奈。为了可以寻求办法飞的更久一些,研究下电池的现状。

我之前经常忽悠别人的一个说法是,化学电池进化到锂(Li)就已经是极限了。因为一种元素能够携带的电荷密度越高,电池到达能量密度就越高。Li已经是所有固体元素中质量最小的了。

而Li的质子数是3,最稳定的两种同位素是6Li和7Li,最常见的7Li,其丰度为0.9241,我们下面就假设只分析7Li。但是因为最底层的电子轨道上的两个电子是稳定的,所以相当于7个质子/中子的重量能提供一个电子的电荷。

然后再算质子,其带的电荷是1.6*10^{-19}C,重量是1.6*10^{-27}Kg。并且假设电子不算重量,而中子的重量是跟质子一样的。

当然这还不是全部,毕竟要让锂电池放电,还需要构成电池,以常用的锂聚合物电池的反应:LiCoO2+6C,会放出一个电子的电荷。

其中用到的Co,常见的拥有27个质子,32个中子。O,常见的拥有8个质子,8个中子。C,常见的拥有6个质子,6个中子。

所有这些算一起,一共有82个质子,88个中子。一共相当于170个质子/中子的重量,才能提供1个电子的电荷。

如果按照这样来计算,锂聚合物电池能提供的极限电荷密度是588235C/Kg,假设锂聚合物电池的电压是3.6V,转换为能量密度则是588Wh/Kg。

所以现在来看化学家已经能把锂电池的效率做到24%,已经很不错了。当然,现实也很骨感,锂聚合物电池的极限也就是如此。

想要继续提高锂电池在化学方式上的能量密度,就需要改用其他化学反应,具体什么我不清楚,毕竟十多年没碰化学了,但是相信能玩的空间很有限。

物理方法存储能量呢,我倒是参考过一些方法,比如飞轮之类的。按我的看法,宏观的能量假如简单的分为动能和势能。比如电容存储的是电势能,而电感存储的是电动能。则势能的存储效率相对较高,而动能在存储过程中则很容易发生自身损耗。所以呢,任何用动能类的方式存储能量的,在我看来都不靠谱。

最近几年移动设备的流行,使得电池的重要性不断提高。各种据说是对电池的突破性研究也不断见诸报端。都是动则说是几十倍、上百倍的容量提高。不过按照如上分析,估计还是不太靠谱的。化学电池距离极限已经不远了,物理方面动能方法则在存储损耗上很扯淡。

至于超级电容(法拉电容),大家也不要高兴,那玩意拥有很高的功率密度,功率密度,功率密度,功率密度,功率密度。我要重复5遍,以示警告。所谓功率密度,就是放电速度快。但是能量密度方面,距离锂电池还远着呢。最近的Intel青年科学家奖里那个跑龙套的女孩,也是利用其他科学家的成果,使得超级电容的能量密度提高到20Wh/Kg而已,而真正研究该技术的团队也只是将其能量密度提高到60~70Wh/Kg。

好吧,分析了半天,连对错都没谱。尽管以前化学学的不错,但是毕竟高中毕业后的11年来再也没有碰过化学,如果计算上有什么错误欢迎指正。结论呢,就是相对悲观,短期内不会有什么好用的电池了。

你可能感兴趣的:(化工,电池,四轴,航模)