版权声明:可以任意转载,但转载时必须标明原作者charlee、原始链接http://tech.idv2.com/2008/02/21/unicode-intro/以及本声明。
最近一直在忙点私活,又好久没写blog了,再不写点的话二月份就又要以单篇文章结束了。 前一阵子一直在研究Unicode,索性把研究结果介绍一下吧。
可能大家都听说过 Unicode、UCS-2、UTF-8 等等词汇,但它们具体是什么意思, 是什么原理,之间有什么关系,恐怕就很少有人明白了。 下面就分别介绍一下它们。
- 基本知识
- 字节和字符的区别
- Big Endian和Little Endian
- UCS-2和UCS-4
- UTF-16和UTF-32
- UTF-16
- UTF-32
- UTF-8
基本知识
介绍Unicode之前,首先要讲解一些基础知识。虽然跟Unicode没有直接的关系, 但想弄明白Unicode,没这些还真不行。
字节和字符的区别
咦,字节和字符能有什么区别啊?不都是一样的吗?完全正确,但只是在古老的DOS时代。 当Unicode出现后,字节和字符就不一样了。
字节(octet)是一个八位的存储单元,取值范围一定是0~255。而字符(character,或者word) 为语言意义上的符号,范围就不一定了。例如在UCS-2中定义的字符范围为0~65535, 它的一个字符占用两个字节。
Big Endian和Little Endian
上面提到了一个字符可能占用多个字节,那么这多个字节在计算机中如何存储呢? 比如字符0xabcd,它的存储格式到底是 AB CD,还是 CD AB 呢?
实际上两者都有可能,并分别有不同的名字。如果存储为 AB CD,则称为Big Endian; 如果存储为 CD AB,则称为Little Endian。
具体来说,以下这种存储格式为Big Endian,因为值(0xabcd)的高位(0xab)存储在前面:
地址 | 值 |
0x00000000 | AB |
0x00000001 | CD |
相反,以下这种存储格式为Little Endian:
地址 | 值 |
0x00000000 | CD |
0x00000001 | AB |
UCS-2和UCS-4
Unicode是为整合全世界的所有语言文字而诞生的。任何文字在Unicode中都对应一个值, 这个值称为代码点(code point)。代码点的值通常写成 U+ABCD 的格式。 而文字和代码点之间的对应关系就是UCS-2(Universal Character Set coded in 2 octets)。 顾名思义,UCS-2是用两个字节来表示代码点,其取值范围为 U+0000~U+FFFF。
为了能表示更多的文字,人们又提出了UCS-4,即用四个字节表示代码点。 它的范围为 U+00000000~U+7FFFFFFF,其中 U+00000000~U+0000FFFF和UCS-2是一样的。
要注意,UCS-2和UCS-4只规定了代码点和文字之间的对应关系,并没有规定代码点在计算机中如何存储。 规定存储方式的称为UTF(Unicode Transformation Format),其中应用较多的就是UTF-16和UTF-8了。
UTF-16和UTF-32
UTF-16
UTF-16由RFC2781规定,它使用两个字节来表示一个代码点。
不难猜到,UTF-16是完全对应于UCS-2的,即把UCS-2规定的代码点通过Big Endian或Little Endian方式 直接保存下来。UTF-16包括三种:UTF-16,UTF-16BE(Big Endian),UTF-16LE(Little Endian)。
UTF-16BE和UTF-16LE不难理解,而UTF-16就需要通过在文件开头以名为BOM(Byte Order Mark)的字符 来表明文件是Big Endian还是Little Endian。BOM为U+FEFF这个字符。
其实BOM是个小聪明的想法。由于UCS-2没有定义U+FFFE, 因此只要出现 FF FE 或者 FE FF 这样的字节序列,就可以认为它是U+FEFF, 并且可以判断出是Big Endian还是Little Endian。
举个例子。“ABC”这三个字符用各种方式编码后的结果如下:
UTF-16BE | 00 41 00 42 00 43 |
UTF-16LE | 41 00 42 00 43 00 |
UTF-16(Big Endian) | FE FF 00 41 00 42 00 43 |
UTF-16(Little Endian) | FF FE 41 00 42 00 43 00 |
UTF-16(不带BOM) | 00 41 00 42 00 43 |
Windows平台下默认的Unicode编码为Little Endian的UTF-16(即上述的 FF FE 41 00 42 00 43 00)。 你可以打开记事本,写上ABC,然后保存,再用二进制编辑器看看它的编码结果。
另外,UTF-16还能表示一部分的UCS-4代码点——U+10000~U+10FFFF。 表示算法比较复杂,简单说明如下:
- 从代码点U中减去0x10000,得到U'。这样U+10000~U+10FFFF就变成了 0x00000~0xFFFFF。
- 用20位二进制数表示U'。 U'=yyyyyyyyyyxxxxxxxxxx
- 将前10位和后10位用W1和W2表示,W1=110110yyyyyyyyyy,W2=110111xxxxxxxxxx,则 W1 = D800~DBFF,W2 = DC00~DFFF。
例如,U+12345表示为 D8 08 DF 45(UTF-16BE),或者08 D8 45 DF(UTF-16LE)。
但是由于这种算法的存在,造成UCS-2中的 U+D800~U+DFFF 变成了无定义的字符。
UTF-32
UTF-32用四个字节表示代码点,这样就可以完全表示UCS-4的所有代码点,而无需像UTF-16那样使用复杂的算法。 与UTF-16类似,UTF-32也包括UTF-32、UTF-32BE、UTF-32LE三种编码,UTF-32也同样需要BOM字符。 仅用'ABC'举例:
UTF-32BE | 00 00 00 41 00 00 00 42 00 00 00 43 |
UTF-32LE | 41 00 00 00 42 00 00 00 43 00 00 00 |
UTF-32(Big Endian) | 00 00 FE FF 00 00 00 41 00 00 00 42 00 00 00 43 |
UTF-32(Little Endian) | FF FE 00 00 41 00 00 00 42 00 00 00 43 00 00 00 |
UTF-32(不带BOM) | 00 00 00 41 00 00 00 42 00 00 00 43 |
UTF-8
UTF-16和UTF-32的一个缺点就是它们固定使用两个或四个字节, 这样在表示纯ASCII文件时会有很多00字节,造成浪费。 而RFC3629定义的UTF-8则解决了这个问题。
UTF-8用1~4个字节来表示代码点。表示方式如下:
UCS-2 (UCS-4) | 位序列 | 第一字节 | 第二字节 | 第三字节 | 第四字节 |
U+0000 .. U+007F | 00000000-0xxxxxxx | 0xxxxxxx | |||
U+0080 .. U+07FF | 00000xxx-xxyyyyyy | 110xxxxx | 10yyyyyy | ||
U+0800 .. U+FFFF | xxxxyyyy-yyzzzzzz | 1110xxxx | 10yyyyyy | 10zzzzzz | |
U+10000..U+10FFFF | 00000000-000wwwxx- xxxxyyyy-yyzzzzzzz |
11110www | 10xxxxxx | 10yyyyyy | 10zzzzzz |
可见,ASCII字符(U+0000~U+007F)部分完全使用一个字节,避免了存储空间的浪费。 而且UTF-8不再需要BOM字节。
另外,从上表中可以看出,单字节编码的第一字节为[00-7F],双字节编码的第一字节为[C2-DF], 三字节编码的第一字节为[E0-EF]。这样只要看到第一个字节的范围就可以知道编码的字节数。 这样也可以大大简化算法。